Department of Electrical and Computer Engineering
McGill University, Montreal

Query-Based Runtime Monitoring
in Real-Time and Distributed Systems

Ph.D. Thesis

Marton Bur

July 2021

A thesis submitted to McGill University in partial fulfillment
of the requirements of the degree of Doctor of Philosophy

© Marton Bur, 2021

Abstract

Modern smart and safe cyber-physical systems (CPSs) have complex interactions with their
uncertain environment that is rarely known in advance, while operating in a trustworthy
way. They heavily depend on intelligent data processing carried out over a heterogeneous
and distributed computing platform with resource-constrained devices to monitor and control
autonomous behavior. Due to these characteristics, design time verification and testing used
in traditional safety-critical systems often become infeasible in practice. As such, runtime

verification approaches are used to ensure correct operation.

This thesis addresses the challenges of runtime monitoring in smart and safe CPSs by
adapting graph-like representations mainly used at design time to a runtime setting to provide

an extra layer of safety to data-intensive critical systems.

First, we adapt runtime models for resource-constrained real-time environments to cap-
ture the system state in an dynamic knowledge graph that incorporates domain concepts. We
propose to capture safety rules of runtime monitors as graph queries, which are evaluated
over snapshots of the underlying runtime model of the system. Furthermore, we show how to

derive deployable monitoring programs from high-level query specifications automatically.

Then, worst-case execution time (WCET) analysis is presented for these auto-generated
query-based runtime monitoring programs to enable their use in hard real-time settings. To
achieve this, we provide two complementary approaches. One approach uses a combination of
traditional static analysis-based WCET computation and a state-of-the-art graph generation
technique to synthesize so-called witness models up to a given model size where the query
program is estimated to have the highest (i.e., worst-case) run time. The other approach pro-
vides on-line (i.e., runtime) estimates of execution time for a query program over a specific

model by using a symbolic formula which relies on condensed graph model metrics.

Finally, we extend runtime models and queries to a distributed and resource-constrained
setting. The runtime model is partitioned among the participating nodes in the platform, and
it is consistently kept up-to-date in a continuously evolving environment by a time-triggered

model management protocol. We provide a semantic treatment of distributed graph queries

using 3-valued logic to incorporate uncertainties and delays in a semantically consistent way.
Furthermore, our runtime models offer a (domain-specific) model query and manipulation
interface over the reliable communication middleware of the Data Distribution Service (DDS)

standard widely used in the CPS domain.

For each contribution, we evaluate the feasibility and scalability of our approaches using

prototype implementations in the context of the MoDeS3 educational CPS platform.

ii

Abreégé

Les systemes cyber-physiques (CPS) modernes intelligents et siirs ont une interaction com-
plexe avec leur environnement incertain et rarement connu a ’avance tout en fonctionnant
de maniéere fiable. Ils dépendent fortement d’un traitement intelligent des données effectué
sur une plate-forme informatique hétérogéne et distribuée avec des dispositifs de calculs aux
ressources informatiques limitées pour surveiller et controler le comportement autonome. En
raison de ces caractéristiques, la vérification et les essais effectués lors de la conception tradi-
tionnelle des systémes sfirs et critiques sont la plupart du temps irréalisables en pratique. Etant
donné ces contraintes, des approches de vérification d’exécution sont utilisées pour garantir

un fonctionnement correct.

Cette these aborde les défis de la surveillance d’exécution dans les CPS intelligents et stirs
en adaptant des représentations de graphes principalement utilisées au moment de la concep-
tion a un modeéle en temps réel de sorte a offrir une couche de sécurité supplémentaire aux

systémes critiques ayant un volume important de données.

Tout d’abord, nous adaptons les modeles d’exécution pour les environnements en temps
réel a ressources informatiques limitées afin de capturer I'état du systeme dans un graphe
de connaissances dynamique qui incorpore des concepts du domaine en question. Nous pro-
posons de capturer les regles de sécurité des moniteurs d’exécution sous forme de requétes
graphiques qui sont évaluées a partir d’instantanés du modele d’exécution sous-jacent du sys-
teme. De plus, nous démontrons comment dériver automatiquement des programmes déploy-

ables de surveillance a partir de spécifications de requétes de haut niveau.

Ensuite, 'analyse du temps d’exécution dans le pire des cas (WCET) est présentée pour
ces programmes de surveillance d’exécution basés sur des requétes générées automatiquement
afin de permettre leur utilisation dans des parametres en temps réel dur. Pour y parvenir, nous
proposons deux approches complémentaires. Une approche utilise une combinaison du calcul
WCET traditionnel basé sur ’analyse statique et une technique de génération de graphes de
pointe pour synthétiser des modeles dits témoins jusqu’a une taille de modéle donnée ou le

programme de requéte est estimé d’avoir le temps d’exécution le plus élevé (c.-a-d. , dans le

iii

pire des cas). L’autre approche fournit des estimations lors de 'exécution d’un programme
de requéte sur un modeéle spécifique en utilisant une formule symbolique qui repose sur des

métriques d’'un modéle de graphe condensé.

Enfin, nous étendons les modéles d’exécution et les requétes dans un environnement dis-
tribué et limité par les ressources informatiques. Le modéle d’exécution est partitionné entre
les noeuds participants de la plate-forme et il est constamment mis a jour dans un environ-
nement en constante évolution par un protocole de gestion de modele déclenché par le temps.
Nous fournissons un traitement sémantique des requétes de graphes distribués en utilisant la
logique ternaire pour incorporer les incertitudes et les retards d'une maniere sémantiquement
cohérente. En outre, nos modeles d’exécution offrent une interface de requéte et de manipula-
tion de modeéle (spécifique au domaine) sur l'intergiciel de communication fiable du standard

DDS (Data Distribution Service) largement utilisé dans le domaine CPS.

Pour chaque contribution, nous évaluons la faisabilité et ’évolutivité de nos approches en
utilisant des prototypes d’implémentations dans le contexte de la plate-forme CPS éducative
MoDeS3.

iv

Acknowledgements

This thesis marks the end of my journey as a Ph.D. student at McGill University. Along the way,
I have had the privilege to meet and work with excellent scientists and engineers from different
parts of the world and solve challenging problems. Besides professional advancement, I am
grateful for the lots of new friendships and the invaluable life experiences I gained during
these unforgettable years in the wonderful city of Montreal. I would like to thank everybody
who has supported me in any way throughout my studies. Additionally, I would like to give

special thanks to the people who made it possible to achieve my goal.

Ph.D. Advisor. First and foremost, I would like to express my heartfelt gratitude towards

my advisor Professor Daniel Varr6 for his excellent guidance and continuous support.

Ph.D. Committee Members. Iextend my sincere thanks to Professor Bettina Kemme and
Professor Gunter Mussbacher for the helpful feedback and insights they have provided me
during my studies. I gratefully acknowledge the efforts of Professor Abdelwahab Hamou-

Lhadj and Professor Gunter Mussbacher for reviewing and providing feedback on the thesis.

Colleagues. I also had great pleasure of working with the excellent colleagues at McGill
University’s Electrical and Computer Engineering Department, at the Critical Systems Re-
search Group (FTSRG) in Budapest, and at IncQuery Labs Ltd. I am especially grateful for
Kristof Marussy, Gabor Szilagyi, and Andras Voros for the countless hours of joint work. I
thank the MoDeS3 developer team, especially Zsolt Mazl6 and Balint Hegyi the hard work
and technical support, and Mathieu Boucher for helping with the translation of the abstract

to French. Last but not least, I am deeply indebted to Gabor Szarnyas for his assistance.

Financial support. This work would not have been possible without the generous financial
support provided by the McGill Engineering Doctoral Award (MEDA) program maintained
by the Faculty of Engineering and the Graduate Research Enhancement and Travel Awards
(GREAT Awards). I also received financial support from the NSERC RGPIN-04573-16 project.

Friends and family. Finally, I would like to extend my deepest gratitude towards my close

friends and family, who have continuously provided me encouragement, support, and love.

Preface

Each of my contributions presented henceforth is a result of the research conducted at the

Department of Electrical and Computer Engineering at McGill University under the PhD su-

pervision of Professor Daniel Varroé. Part of the results in this thesis are included in the publi-

cations listed below. For each work, I provide a short summary about the individual contribu-

tions of authors, and include which chapters of the thesis are linked to the paper. A detailed

description of the contributions is presented in Section 1.4.

Journal Papers

(1]

[i2]

Marton Bur, Kirst6f Marussy, Brett Meyer, and Daniel Varr6. Worst-case execution time
calculation for query-based monitors by witness generation. ACM Transactions on Em-
bedded Computing Systems, 2020. Accepted.

> The concept of witness models used for worst-case execution time (WCET) estima-
tion of real-time graph query programs is my contribution. Graph generation technique
for static WCET estimation is the contribution of Kristof Marussy. The evaluation of the
proposed approach is joint work with Kristof Marussy. Daniel Varré and Brett Meyer were
helping the work as advisors by providing initial research ideas and continuous feedback.
Results regarding WCET analysis are included in Chapter 7, while real-time graph data
structures are added to Chapter 5.

Marton Bur, Gabor Szilagyi, Andras Voros, and Daniel Varré. Distributed graph queries
over models@run.time for runtime monitoring of cyber-physical systems. International
Journal on Software Tools for Technology Transfer 22(1), Sept. 2019, pp. 79-102. por: 10.
1007/s10009-019-00531-5.

> The foundations of distributed query evaluation is my contribution. The distributed
runtime model update protocol is designed by Daniel Varré and myself. Prototype imple-
mentation and evaluation is done by Gabor Szilagyi and myself. Daniel Varré and Andras
Voros were helping in the formal mathematical treatment and continuously provided ad-
vice and feedback. The distributed model update protocol is presented in Chapter 8, while
the distributed query evaluation is presented in Chapter 9.

vi

https://doi.org/10.1007/s10009-019-00531-5
https://doi.org/10.1007/s10009-019-00531-5

Peer-Reviewed International Conference Papers

3]

[c5]

Marton Bur and Daniel Varr6. Towards WCET estimation of graph queries@run.time.
In: IEEE / ACM 22nd International Conference on Model Driven Engineering Languages
and Systems (MODELS), IEEE, Sept. 2019. por: 10.1109/MODELS.2019.00007.

> The on-line WCET estimation technique for runtime query-based monitoring pro-
grams is my contribution. The research roadmap for estimating WCET of query-based
programs is a joint contribution with Daniel Varré. Part of the results are presented in

Chapter 9.

Marton Bur and Daniel Varrd. Evaluation of distributed query-based monitoring over
data distribution service. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT),
IEEE, Apr. 2019. por: 10.1109/wf-iot.2019.8767281.

> The two different distributed query evaluation strategies are my contributions. Daniel
Varré was helping the work as advisor by providing initial research ideas and continuous

feedback. Part of the results are presented in Chapter 9.

Marton Bur, Gabor Szilagyi, Andras Voros, and Daniel Varré. Distributed graph queries
for runtime monitoring of cyber-physical systems. In: International Conference on Fun-
damental Approaches to Software Engineering, pp. 111-128. Springer International Pub-
lishing, 2018. por: 10.1007/978-3-319-89363-1_7.

> The foundations of distributed query-based monitors is my contribution. Prototype
implementation and evaluation is a joint effort of Gabor Szilagyi and myself. Daniel Varré
and Andras Voros were helping in the formal mathematical treatment and continuously

provided advice and feedback. Results are presented in Chapter 9.

Andras Vords, Marton Bur, Istvan Rath, Akos Horvath, Zoltan Micskei, Laszld Balogh,
Benedek Horvath, Zsolt M4z16, and Daniel Varrd. MoDeS3: model-based demonstra-
tor for smart and safe cyber-physical systems. In: NASA Formal Methods Symposium,
pp. 460—467. Springer International Publishing, 2018. por: 10 . 1007 /978 - 3 - 319 -
77935-5_31.

> I have made contributions to the hierarchical query-based runtime monitors running
in the MoDeS3 system, and have served as the lead architect of the project for over a year.
The MoDeS3 project is a joint effort of many participants. Andras Voros was leading the
project. Istvan Rath, Akos Horvath, Zoltan Micskei, and Daniel Varré helped the work as
advisors and provided ideas about what the demonstrator should feature. Laszl6 Balogh,

Benedek Horvath, and Zsolt Mazl6 worked on the implementation. Despite my contribu-

vii

https://doi.org/10.1109/MODELS.2019.00007
https://doi.org/10.1109/wf-iot.2019.8767281
https://doi.org/10.1007/978-3-319-89363-1_7
https://doi.org/10.1007/978-3-319-77935-5_31
https://doi.org/10.1007/978-3-319-77935-5_31

tions, due to the highly collaborative nature of the work, I do not claim novel scientific

contributions related to the core MoDeS3 demonstrator platform.

[c7] Marton Bur, Zoltan Ujhelyi, Akos Horvéath, and Déaniel Varré. Local search-based pat-
tern matching features in EMF-IncQuery. In: 8th International Conference on Graph Trans-
formation, pp. 275-282. Springer International Publishing, 2015. po1: 10.1007/978-3-
319-21145-9_18.

> The implementation of the local search-based query debugger and its integration to the
Eclipse IDE is my contribution. Zoltan Ujhelyi coordinated the development and provided
technical support during development, while Akos Horvath and Daniel Varré were helping

the work as advisors by providing initial research ideas and continuous feedback.

viii

https://doi.org/10.1007/978-3-319-21145-9_18
https://doi.org/10.1007/978-3-319-21145-9_18

Preface

Contents

vi

List of Abbreviations xix
I Preliminaries 1
1 Introduction 2
1.1 Smartand Safe Systems 2

1.2 Model-Based Development of Safety-Critical Systems 3

1.3 Assurance of Smart Systems: Hypothesisand Goals 4

1.4 Research Questions and Contributions 6
1.4.1 Runtime Models 6

1.4.2 Runtime Queries 7

1.43 Timing Analysis 8

1.5 Structureof the Thesis 9

2 Motivating Case Study 11
2.1 MoDeS3: a Demonstrator for Smart and SafeCPS 11

2.2 Design- and Runtime Assurance oL 13
2.2.1 Design Time Formal V&V of Timing Properties 13

2.2.2 Runtime Safety Monitors 14

2.2.3 Hierarchical Distributed Monitors 16

2.24 Timing Analysis of Real-Time Monitors 17

23 Summary e 18

3 Background for Query-Based Monitors 19
3.1 Runtime Models 19
3.1.1 Metamodels and Instance Models 20

3.1.2 Update Operations on Runtime Models 22

3.1.3 First-Order Logic Predicates for Queries Over Graph Models 23

X

3.2 Local Search-Based Graph Query Evaluation

3.3 Model Generation Problems
3.4 The Data Distribution Service Middleware

35 Summary

Related Work
41 RuntimeModels Lo L
4.1.1 Concept of Models@Runtime

4.1.2 Frameworks for Models@Runtime
4.2 Distributed Management of Dynamic Graphs

4.2.1 Management of Graphs in Distributed Systems
4.2.2 Graph Pattern Matching
4.2.3 Distributed Graph Databases

4.3 Runtime Verification e

43.1 Runtime Verification Approaches
4.3.2 Runtime Monitoring in Resource-Constrained Environments.
43.3 Runtime Verification of Distributed Systems.
434 Resource Monitoring Frameworks
4.4 Worst-Case Execution Time Analysis
441 ProgramFlow Analysis.
44.2 Parametric WCET Computation
443 Real-Time Database Queries
444 WCET of Graph-Based Computations
445 Hard Real-Time Monitors in Embedded Systems
44.6 Dynamic Memory Allocation in Embedded Systems

45 Summary e

I Runtime Graph Models and Queries in Real-Time Systems

5 Adaptation of Runtime Graph Models to Embedded Systems

5.1 Graph Data Structures for Embedded Systems
5.1.1 Dynamic Element Allocation

5.1.2 ObjectIndexing

35
35
35

36
37

37
38
39

39
39

40
40
41
41
42
43
43
44
44
44
45

47

7

5.2

53

5.1.3 Continuous Maintenance of Model Statistics
5.1.4 Navigability Along Edges

5.1.5 Reduced Memory Footprint

Evaluation

5.2.1 Evaluation Overviewand Setup

5.2.2 MeasurementResults L.
523 Threatsto Validity

Summary L

Query-Based Runtime Monitors for Real-Time Systems

6.1
6.2
6.3

6.4

Data-Driven Runtime Monitors by Graph Queries
From Declarative Queries to Executable Programs

Evaluation

6.3.1 MeasurementSetup. oL

6.3.2 MeasurementResults
6.3.3 Threatsto Validity

Summary

Timing Analysis of Embedded Query Programs

7.1
7.2

7.3

7.4
7.5

7.6
7.7

7.8

Timing Analysis Challenges
Graph Model-Based WCET Estimation
7.2.1 Existing WCET Analysis Methods
7.2.2 Comparison of Timing Analysis Approaches
7.23 Overview of the Approach
Approximating Execution Time With Predicates

Witness Generation of Worst-Case Execution Time

On-Line WCET Estimation for Graph Query Programs
Hybrid WCET Estimation
Evaluation
7.7.1 Evaluation Overviewand Setup

7.7.2 EvaluationResults,
7.73 Threatsto Validity L.

Summary oL

X1

III Distributed Runtime Graph Models and Queries

8 Distributed Runtime Models

9

8.1

8.2

8.3

8.4

8.5

Distributed Runtime Models
8.1.1 Metamodel Features for Distributed Runtime Models
8.1.2 Distributed Runtime Graph Models

8.1.3 Distributed Model Update Operations
A Model Management Protocol for Distributed Runtime Models
8.2.1 Overview of Assumptions
8.2.2 A Multi-Phase Model Update Protocol
8.23 ObjectCreatePhase
8.24 Object Delete Phase
8.2.5 Link Update RequestPhase
8.2.6 Link Update Reply Phase
Fault Tolerance and Consistency
8.3.1 Fault Tolerance to Handle Message Loss
8.3.2 Semantic Aspects of Consistency
Evaluation
8.4.1 MeasurementSetup. Lo
8.4.2 Benchmark Results on Real CPS Platform
8.4.3 Benchmark Results on a Virtual CPS Platform
8.44 Threatsto Validity,

Summary

Distributed Graph Queries

9.1
9.2

9.3

Strategies for Distributed Runtime Monitoring
Distributed Evaluation of Graph Queries
921 AQueryCycle
9.2.2 Semantics of Distributed Query Evaluation
9.23 Performance Optimizations

9.2.4 Semantic Guarantees and Limitations
Evaluation
9.31 BenchmarkSetup

9.3.2 Benchmark Results Over Real CPS Platform

xii

94

95
96
96
97

98

99

99
101
103
105
106
109
109
109
111

113
113
114
115
117
117

9.3.3 Virtual CPS Benchmark Results 130

9.34 Threatsto Validity 132

9.4 SUMMATY ot e e e e 133

10 Final Conclusion & Future Work 134

10.1 Thesis Summary 134

10.2 Future Work 136

10.2.1 Runtime Graph Models 137

10.2.2 Distributed Query Evaluation 137

10.2.3 Timing Analysis L 138

Bibliography 139
Appendices

A Definitions of Safety Properties in VQL 157

B Proof Sketches 158

xiii

2.1

2.2
2.3

3.1
3.2

3.3

34

4.1

5.1

6.1

6.2
6.3

6.4
6.5
6.6

List of Figures

The MoDeS3 CPS demonstrator system 12
a Physical layout 12
b Architectural overview Lo 12
Overview of runtime verificationin MoDeS3 14
Runtime monitoring by graph queries in the MoDeS3 demonstrator 16
Concepts introduced in this chapter and their usage later in the thesis 20
The MoDeS3 metamodel and instancemodel 21
a Metamodel with metamodel constraints 21
b System snapshot presented as an instance model with the following
model statistics: 7xSegments, 2xTurnouts, 3xTrains 21
Three instance models from the MoDeS3 domain 32
a Objective function value of f(M,) =3+1+2+0=6 32
b Objective function value of f(M) =3+1+2+0=6 32
c Objective function value of f(M,) =3+1+2+2=8 32
UML class diagram of DDS classes 33
Summary of high-level static analysis techniques for computing WCET 42
Memory layout options for the C structure Segment 52
Monitoring goal formulated as a graph query ¢yt for misalignedTurnout . . . 62
a Graph query as logic predicate 62
b Graphical query presentation 62
c Description of a query and its subqueryin VQL 62
CFG of the function mt_matcher 64
Scalability evaluation of query execution on a BeagleBone Black SBC 67

Query evaluation average times on a BBB SBC across models with different sizes 68
Query execution times on three different ARM-based microcontrollers 69

Comparison of initial and optimized query execution times on three different
ARM-based microcontrollerso Lo L 70

Xiv

7.1

7.2
7.3

7.4

8.1
8.2
8.3
8.4

8.5
8.6
8.7
8.8
8.9
8.10
8.11

9.1

9.2
9.3
9.4

Classification of query input models and model updates from the perspective

of WCET analysis e 77
Workflow of WCET estimation for query-based monitors 77
lustrating model generation problems for witness models 82
a Witness model M* for query misalignedTurnout with 12 objects and

satisfying theory 7 and model scope S 82
b Instance model M’ with 12 objects and satisfying theory 7~ but exceed-

ing the model scope § (more Trains and Turnouts) 82
Query execution times on fully random models and realistic models 88
a Measured query execution times over consistent models (green box),

random models (orange box), witness model (blue star), and realistic

model (red triangle) Lo oL 88
b Cross-comparison of measured query run times over witness models

and a model from the MoDeS3 demonstrator (systicks) 88
Extended MoDeS3 metamodel with platform information 97
Distributed runtime model snapshot of MoDeS3 98
Runtime phases of model updates and queries (statechart phases) 102
High-level model of object sensing services local to a participant (statechart
SEMSING) © « v o e e e e e e e 102
States of an object in our model update protocol (statechart object_consistency) 104
Object ownership states (statechart data_ownership) 105
States of a reference in our model update protocol (statechart link_consistency) 107
Participant roles during reference update (statechart role) 108
Number of model objects registered by a single participant 114
Registered objects over time by a single participant (median is shown) 116
Throughput processing comparison by different model update messages on a
single participant Lo Lo 117
Monitoring goal formulated as a graph query ¢ct for closeTrains. 120
a Query closeTrains capturedin VQL 120
b Graphical query presentation 120
c Graph query as logic predicate, 120
Query execution requests across participants while evaluating closeTrains . . 125
Query execution times in MoDeS3 casestudy 129
Average query execution times in MoDeS3 case study 130

XV

9.5 Train Benchmark scalability evaluation results (individual run times)

9.6 Train Benchmark scalability evaluation results (average run times)

XVi

List of Tables

3.1 Search plan for query TurnoutWithErroneousConnections 28
5.1 Runtime model object manipulation times on real-time units 56
6.1 A possible search plan for query misalignedTurnout where free variables are

underlined L 63
7.1 WCET analysis approaches for data-driven runtime monitor programs 75
7.2 Query code complexity, measured execution time, and WCET estimates in sy-

sticks . . L L 90
8.1 Summary of actions when receiving object update messages 103
8.2 Summary of actions for link update request messages 109
8.3 Memory footprints observed in the prototype implementation 115
10.1 Summary of contributionso 136

XVii

List of Algorithms

3.2.1 Query execution algorithm outline 29
6.2.1 Code generation from searchplans, 63
9.2.1 Distributed query execution outline 123

xviil

List of Abbreviations

Abbreviation Description

BB
BBB
CcC
CFG
CPS
DDS
DS
EMF
ES
FOL
GDS
HW
ILP
IPET
ISA
MBSE
MCU
MoDeS3
QoS
RQ
RV
SBC
SC
sCPS
VG
VQL
WCET
WF

basic program block

Beage Bone Black

cyclomatic complexity
control-flow graph
cyber-physical system

Data Distribution Service
domain-specific

Eclipse Modeling Framework
embedded system

first-order logic

global data space

hardware

integer linear programming
implicit path enumeration technique
instruction set architecture
model-based systems engineering
microcontroller unit
Model-Based Demonstrator of Smart and Safe Systems
quality of service

research question

runtime verification

single-board computer
safety-critical

smart cyber-physical system
VIATRA Generator

VIATRA Query Language
worst-case execution time
well-formedness

XixX

Part1

Preliminaries

Introduction

1.1 Smart and Safe Systems

The Internet of Things (IoT) is a worldwide network that joins the computational capacity
of cloud platforms with heterogeneous smart devices equipped with various sensors and ac-
tuators [Gut+16]. As part of IoT, smart cyber-physical systems (sCPS) are gaining increasing
importance in everyday life: healthcare applications, autonomous cars, and smart robot and
transportation systems are becoming more and more widespread [Cic+17]. However, they of-
ten have some safety-critical functionality: errors during operation can have serious financial
consequences or cause damage to human life. The addition of smart data processing to safety-
critical applications and the multidisciplinary nature of CPS make the engineering of such

systems very complex.

Traditional embedded safety-critical software has requirements for ultra-high reliability
which demand fault tolerance and extensive redundancy. An embedded system is often com-
posed of federated components, where a component represents a function, such as drive-by-
wire or breaking in case of a car. Each of these components is upfront separately tested and
verified. The control software of the components is required to have mechanisms for synchro-

nization, voting, and redundancy management [Rus01], which also need to be trustworthy.

Fog computing is the mainstream IoT architecture [MSW18], and it poses vastly differ-
ent requirements on the underlying software. Unlike in safety-critical systems, software in
this context is deployed to a dynamically changing, distributed platform with heterogeneous
devices with various communication interfaces and limited resources including energy con-

sumption, computational capacity, memory, and storage. For this reason, writing software for

1.2 Model-Based Development of Safety-Critical Systems

IoT follows a substantially different approach in terms of platform size (fixed or varying), de-
ployment (planned or ad-hoc), resource allocation (static or on-demand dynamic), bounded
execution time (real-time or best effort), and reliability (fault tolerant or best effort) compared

to traditional critical embedded systems.

However, modern CPS [Kru+15; Nie+15; Szt+12], like self-driving cars, autonomous robots,
and mission critical Internet of Things (IoT) systems, like telecare or smart surveillance appli-
cations, need to comply with safety standards and regulations, while providing autonomous
behavior with complex interactions with their uncertain environment using intelligent data

processing techniques over a heterogeneous computation platform.

1.2 Model-Based Development of Safety-Critical Systems

Many complex design tools used for developing traditional safety-critical systems (such as
Capellal, Papyrus?, and Artop®) rely internally on graph-based models, queries, and transfor-
mations. Graph models are used to efficiently capture desired structure and behavior of the
system under design at a high level of abstraction, thus they provide means to manage the de-
sign time complexity of such systems. They serve as inputs for various verification and code
generation activities. Furthermore, in software configuration management, models are stored
in central model repositories that facilitate collaboration and version control [KH10]. In this

case, models may be split into multiple artifacts for scalability reasons.

Graph queries are often used in software tools for various purposes. One of their common
applications is to capture well-formedness (WF) rules which can detect errors in the design
models [Cse+02]. Moreover, graph transformations, which internally rely on graph queries,

are used to generate code or synthesize test data from models [Maj+19; MSM17].

However, the use of such models and formalisms has been restricted to design time, i.e., no
model queries or transformations run on an aircraft at runtime currently. A main reason for
this is that any piece of software executed at runtime in a safety-critical system needs to satisfy
various extra-functional requirements to ensure deterministic, predictable behavior [Sta18;
Aerlla; Aer11b]. Such lack of guarantees is hardly surprising. Furthermore, in a hard real-
time environment, both correct and timely execution is essential, otherwise an error or a

deadline miss can lead to catastrophic consequences [Riel7]. On the one hand, traditional

'https://www.polarsys.org/capella/download.html
2https://www.eclipse.org/papyrus/
Shttps://www.artop.org/

https://www.polarsys.org/capella/download.html
https://www.eclipse.org/papyrus/
https://www.artop.org/

1.3 Assurance of Smart Systems: Hypothesis and Goals

real-time safety-critical systems have been able to compute timeliness guarantees like worst-
case execution time (WCET), on the other hand, the deployed software uses static memory
allocation and a priori bounded, low-level data structures — none of which provides sufficient

flexibility for modern autonomous or self-adaptive CPS.

1.3 Assurance of Smart Systems: Hypothesis and Goals

A smart CPS needs to provide autonomous behavior in an uncertain environment which is
rarely known in advance, and this frequently makes design time verification infeasible in
practice [LS09; MP14]. For this reason, smart and safe CPSs frequently rely on runtime assur-
ance techniques to ensure safe operation by monitoring. These techniques have evolved from
formal methods, which provide a high level of precision, but offer a low-level specification lan-
guage (with atomic predicates to capture information about the system) which hinders their
use in every day engineering practice. Furthermore, classical runtime assurance approaches
supporting distributed systems [EF17; Dug+12; Gar96] frequently use temporal logic for spec-
ifying safety properties and expected behavior, which excel in temporal properties but they
typically fail to express complex structural requirements. Recent work in the field started to

exploit rule-based [Hav15] techniques over a richer (relational or graph-based) data model.

Hypothesis. Design time graph models and graph queries can be adapted to a runtime setting
to provide rich knowledge representation and efficient, predictable, query-based

runtime assurance for resource-constrained and distributed CPS platforms.

Runtime models (also known as models@runtime [BBF09; SZ13]) provide a rich knowl-
edge representation to capture the runtime state of the application data, services and platforms
in the form of typed and attributed graphs [Ehr+06] to serve as a unifying semantic basis for
various kinds of analysis techniques. For example, runtime models have been used for the
assurance of self-adaptive systems (SAS) in [Che+11; VG14]. However, the direct adaptation
of existing graph-based design time techniques and tools faces several challenges imposed by

their runtime use in a smart system.

Critical embedded components. Software that operates a CPS comprising heterogeneous
computing units needs to track available resources of the whole execution platform (e.g., com-
putational capacity and memory bounds in edge devices) to ensure trustworthiness and other

required quality of service (QoS) guarantees. In contrast, such resources are regarded as abun-

1.3 Assurance of Smart Systems: Hypothesis and Goals

dant in a desktop computer or a cloud environment. For this reason, software in a CPS is often

specific for a target application.

While the models@runtime initiative has been promoting the use of models, queries and
transformations at runtime with major recent advances [Che+11; VG14; Har+19], existing ap-
proaches provide no timeliness guarantees required for any critical applications. For example,
while the GreyCat framework [Har+19] claims to have "near real-time" response times for
online data analytics, but there are no guarantees for timely responses. Queries over run-
time models should be able to read the captured information, this way they could be used to
precisely capture runtime assurance goals. Such a querying capability, as well as the model
management layer itself, should be tailored to the underlying real-time environments. In other
words, if a query is evaluated over a graph model, it is expected to return the results within a

given (hard) deadline. We refer to queries evaluated over runtime models as queries@runtime.

Distributed execution platform. Unlike in CPS design tools, where models are stored in
a centralized way and they evolve slowly, the underlying graph model needs to be distributed
and updated with high frequency based on incoming sensor information and changes in net-
work topology. In addition, well-known challenges of distributed systems such as data con-
sistency and fault-tolerance need to be tackled [KRV18; Hu+20].

Existing distributed runtime models [Har+15; Har+17] support graph node-level version-
ing and reactive programming with lazy loading to make the complete virtual model accessi-
ble from every node over a Java-based platform. However, the use of such runtime models for
analysis purposes in resource-constrained smart devices or critical CPS components is prob-
lematic due to the lack of control over the actual deployment of the model elements to the

execution units of the platform.

Engineering aspects. Besides the challenges mentioned above, there are two additional
important requirements towards graph models@runtime and queries@runtime. (1) The run-
time model and query execution should be scalable w.r.t the number of incoming model up-
dates, model size, query complexity, or the number of platform units. Furthermore, (2) run-
time models and queries should exploit the underlying communication platform which pro-
vides scalable solutions to some aspects of the named challenges (e.g., the Data Distribution
Service [Par03] deals with reliable message delivery over the network without any central

message broker).

1.4 Research Questions and Contributions

Summary of thesis objectives. To elaborate on our hypothesis, we set the following ob-

jectives in the thesis:

Ob1. Provide precise semantics for runtime graph models and queries in the context of runtime
monitoring in CPSs.

Ob2. Ensure predictable execution times for updates to runtime models and executions of
graph query-based monitors.

Ob3. Enable the execution of graph queries over resource-constrained platforms.

Ob4. Provide scalability evaluation of models@runtime and queries@runtime in real-time
and distributed CPS.

Ob5. Implement a software prototype for evaluation and integrate it with existing tools and

frameworks.

1.4 Research Questions and Contributions

I formulate three main research questions in this thesis to cover the goals introduced in Sec-

tion 1.3. For each research question, a short summary of the contributions is given.

1.4.1 Runtime Models

The first research question focuses on graph models as runtime knowledge representation.

RQ1. How to capture and continuously maintain the state of a real-time/distributed system

and its operational context in a runtime graph model?

Contributions. I propose a representation of dynamically changing graph models for real-
time embedded systems, and define model update protocols with prototype implementations

featuring the following characteristics:

Col.1. Graph data structures for embedded systems: I provide low-level data structures for
storing dynamic graph data in real-time embedded systems to support deterministic
execution times for data-driven monitoring programs with changing memory needs.

Co1.2. Model manipulation interface and protocol: I propose a runtime model offering a high-
level model manipulation interface to be used by low-level sensors and high-level
domain-specific applications. To support distributed CPS, I propose a novel update
protocol to guarantee consistent model updates by enforcing the single source of truth

principle.

1.4 Research Questions and Contributions

Co1.3. Deployment and integration to resource-constrained platforms: 1 provide a prototype
implementation of the runtime model interface that is deployable over resource-con-
strained devices. To support distributed CPS platforms, my prototype is integrated
with the Data Distribution Service standard [Par03] as a reliable underlying messaging
middleware between computing units.

Co1.4. Scalability evaluation: I carried out a scalability evaluation of the prototype in the con-
text of the MoDeS3 demonstrator (as a physical CPS platform) and a simulated envi-
ronment with increasing number of computing units in the platform. The presented

approach is able to manage up to 420K model objects stored by 20 different units.

Results focusing on distributed CPS platforms were presented in the journal article [j2],
and the MoDeS3 educational demonstrator, which [have been working on as the lead architect

for over a year, was presented in a peer-reviewed international conference [c6].

1.4.2 Runtime Queries

Assuming that an up-to-date runtime graph model correctly reflects the current state of the
system and its environment, the second research question addressed in the thesis is about

graph query execution.

RQ2. How to evaluate graph queries on runtime models deployed over a real-time/distributed

platform with resource constraints?

Contributions. [adapt graph query-based runtime monitors to resource-constrained envi-
ronments. Furthermore, I propose distributed query strategies on top of distributed runtime
models where each model element is managed by a dedicated computing unit of the platform.

In this regard, I provide the following specific contributions:

Co2.1. Query-based runtime monitors in resource-constrained environments: I propose a tech-
nique for automatically synthesizing deployable embedded monitoring programs from
high-level query specifications.

Co2.2. Semantic description for queries with uncertain results: I define precise semantics of
graph query evaluation over runtime graph models using 3-valued logic [Sob52] to
uniformly capture contextual and communication uncertainty.

Co2.3. Distributed query evaluation strategies: I define a coordinator-driven (single executor)
and a decentralized (multiple executors) strategy for evaluating graph queries over

distributed runtime models.

1.4 Research Questions and Contributions

Co2.4. Graph queries as services over resource-constrained environments: 1 provide a proto-
type implementation of query-based distributed monitors deployed over resource-
constrained environments. I integrate this prototype with a reliable messaging mid-
dleware compliant with the Data Distribution Service standard [Par03].

Co2.5. Scalability evaluation: 1 provide a performance evaluation of our distributed query
technique over the physical platform of the MoDeS3 demonstrator and also assess its
performance using an open query benchmark [Sza+17] over a virtual CPS platform.
The evaluation results show that the approach is capable of evaluating graph queries

with different complexities over a distributed plaftorm of 20 computing units.

Our results regarding distributed graph query evaluation were published at multiple peer-

reviewed international conferences [c7; c5; c4].

1.4.3 Timing Analysis

The third research question focuses on timing analysis of query-based runtime monitors to

enable their application in hard real-time environments.

RQ3. How to compute safe and practical WCET bounds for queries at runtime deployed over

a real-time platform?

Contributions. I present two complementary flow analysis techniques [LS03] for the high-
level WCET analysis of query programs running on a single platform node. To address the
highly data-dependent behavior of such monitors, our key idea is to provide WCET guarantees

relative to the size of the model by exploiting domain-specific characteristics of graphs.

Co3.1. Static WCET analysis: 1 propose a static design-time WCET analysis method for data-
driven monitoring programs derived from graph queries. The method incorporates
results obtained from low-level timing analysis into the objective function of a mod-
ern graph solver [SNV18], and then it maximizes the execution time estimate (i.e.,
estimates the WCET) over a given model space to provide a safe upper bound for ex-
ecution time.

Co3.2. Witness model generation: I provide witness models where the monitor is expected to
take the most time to complete among all models up to a predefined size bound. The

run time estimate of the monitor over such models is used as the WCET estimate.

1.5 Structure of the Thesis

Co3.3. On-line WCET analysis: When the runtime graph model exceeds the boundaries of

design time WCET estimation, I provide an approach to fast yet conservative on-the-

fly recomputation of safe execution time bounds exploiting runtime model statistics.

Co3.4. Evaluation of the WCET estimates: I perform experimental evaluation of query-based

programs executed over a real-time platform over a set of generated models. Moreover,
I compare WCETs obtained with the different approaches to show that the static WCET
estimation approach can provide more precise estimates, while the on-line estimation

can be recomputed rapidly without significant loss of precision.

A part of the results presented in the thesis were published in a peer-reviewed interna-

tional conference [c3]. A journal paper focusing on static WCET estimation and witness model

generation is currently under review [j1].

To help the reproducibility of the results presented in this thesis, we have shared the de-

tailed measurement results online*.

1.5

Structure of the Thesis

This thesis consists of 10 chapters including this first introductory chapter with motivation

for query-based runtime monitors, research questions, and outline of contributions. The re-

mainder of the thesis is structured as follows.

Chapter 2 presents MoDeS3, a demonstrator system for smart and safe railway systems.
This system is used for showcasing the techniques presented in this thesis.

Chapter 3 presents the background on various modeling concepts.

Chapter 4 discusses the results in the context of related work.

Chapter 5 describes how to adapt runtime graph models to real-time embedded systems.
Chapter 6 discusses the adaptation of query-based monitors to real-time embedded sys-
tems.

Chapter 7 proposes WCET analysis techniques for query-based monitoring programs.
Chapter 8 discusses a distributed runtime graph model management protocol.

Chapter 9 presents our distributed query evaluation framework.

Chapter 10 provides concluding remarks and describes future research directions.

At the end of each chapter, the Summary section briefly highlights the novel contributions

of the chapter, and discusses the contribution of authors to the presented results and publi-

*https://imbur.github.io/cps-query/

https://imbur.github.io/cps-query/

1.5 Structure of the Thesis

cations. In such descriptions, first person singular is used to emphasize contributions made
by the author of this thesis, while the role and contribution of authors (excluding my Ph.D.
supervisor) are discussed in detail. Otherwise, the use of first person plural highlights the

collaborative nature of the work leading to the contribution.

10

Motivating Case Study

Our work shows several motivating examples where our runtime monitoring framework is
employed. These examples are all related to each other and are part of a common exemplar
of modern cyber-physical systems. This chapter presents this demonstrator system used in
illustrations throughout the thesis. We provide a general overview of MoDeS3 in Section 2.1,

and discuss the showcased design time and runtime assurance techniques in Section 2.2.

2.1 MoDeS3: a Demonstrator for Smart and Safe CPS

Both research and education of CPSs necessitate well-documented open-source demonstrator
platforms which capture and reflect the essence of problems and challenges, yet are reason-
ably complex to highlight the key characteristics of CPSs and present them in the context of
modern technologies. We introduce MoDeS3: the Model-based Demonstrator for Smart and Safe
Cyber-Physical Systems, which aims to illustrate the combined use of model-driven develop-
ment, intelligent data processing, safety engineering, and IoT technologies in the context of
safety-critical system of systems with emerging safety hazards. This open-source project si-
multaneously serves as (1) a research platform used for experimental evaluation of CPS-related
research, (2) a complex educational platform used for graduate and undergraduate teaching,

and (3) an [oT technology demonstrator used by industrial partners and collaborators.

The MoDeS3 demonstrator as a smart and safe CPS. The physical layout of MoDeS3 is
depicted in Figure 2.1a. At its core, there is a model railway transportation system, for which
guarantees for the safe operation of trains, switches, and semaphores are required. Connected
to a specific segment of the track, an automated crane system loads cargo on and off the trains.

As such, it is a critical system in itself since the cargo cannot be dropped by the crane.

11

2.1 MoDeS3: a Demonstrator for Smart and Safe CPS

Hierarchical Monitoring

Safety Logic

Safety Logic

3 . L : A
3 | Rallwa):\System |(--)| Crane’S\ystem |

Control Loop Control Loop

Data Processing

R g

Sensing

 pewS plop [BaIsAyd oyEs

|
|
|
! | Data Processing
|
|
|

2 55 i =
s, /7 S
< » ’Ilullln‘r'nmmn T

7 , i
Prrs sl 2T

O LTS vy
LA NS

(a) Physical layout (b) Architectural overview

Figure 2.1: The MoDeS3 CPS demonstrator system

Additionally, the MoDeS3 demonstrator represents a system-of-systems, since the railway
and the crane system are physically located next to each other. In this case, new kind of haz-
ardous situations may emerge which are not incorporated in any of the constituent systems.

For instance, the rotating crane may collide with a train passing by along the track.

The computing platform of the MoDeS3 CPS demonstrator is built from industrial-grade
hardware components. These components are often used in embedded systems applications,
where processor, memory, and peripherals are tightly coupled with other electronic hardware
to provide a dedicated function. Moreover, several components are used in safety-critical ap-

plications, where system failure can lead to catastrophic consequences.

To make the demonstrator more realistic, we adopted various safety assurance techniques
ranging across design time formal verification and validation (V&V), runtime monitoring or
testing on various levels of abstraction. A conceptual overview is provided in Figure 2.1b.
Multiple levels of safety are applied: a distributed safety logic is responsible for the accident-
free operation of the trains. Hierarchical monitoring is used to ensure the safe cooperation of
the subsystems. A wide range of sensors serves as a rich information source for smart control

and data analytics.

In a safety-critical application it is important to ensure that the software is able to provide
the results by specific deadlines. Delayed responses in many cases are considered as errors
and can have catastrophic consequences. For this reason, safety monitoring components of

MoDeS3 are analyzed to ensure deterministic timing behavior.

12

2.2 Design- and Runtime Assurance

In the following, we focus on the assurance techniques applied in the demonstrator. Since
this work positions MoDeS3 as the motivating case study for data-driven runtime monitoring,

we provide a detailed overview of this approach and its application.

2.2 Design- and Runtime Assurance

The development of safety-critical systems has a long history with well-established method-
ologies to ensure safe operation. The MoDeS3 demonstrator is built using Model-Based Sys-
tems Engineering (MBSE) where models are first-class citizens of the engineering process.
SysML models are used to define the functional and the platform architecture of the system,
while the Gamma Statechart Composition Framework [Mol+18] is used for the precise def-
inition of the component level behavior. Gamma supports the design, verification and code

generation for component-based reactive systems.

The MoDeS3 demonstrator incorporates various V&V approaches (such as model check-
ing, structural completeness and consistency analysis) as well as fault-tolerance techniques
— all of which are widely used in real systems. However, due to its complex and multidis-
ciplinary nature, design time assurance cannot guarantee in itself the safe operation of in-
herently dynamic smart CPSs. Therefore, runtime certification [Rus08] using techniques like
runtime monitoring [Med+15] or runtime verification [Hav15] complement design time as-
surance. Therefore, MoDeS3 integrates runtime monitoring and verification techniques on
both component and system-level to flag violations of safety properties during the opera-
tion of the system and trigger appropriate counter-measures such as immediately stopping or
slowing down trains. Our emphasis is on the combined use of design time and runtime V&V

techniques when building MoDeS3 to address its safety requirements.

2.2.1 Design Time Formal V&V of Timing Properties

As a primary design time verification task, we carried out a formal analysis of logical and
timing properties of the distributed safety logic of the accident prevention subsystem. We
employed the Gamma Statechart Composition Framework [Mol+18] to form the composite
behavior of statechart models. This composite model serves as the engineering input for the
design time analysis. Gamma introduces an intermediate state machine language with some
high-level constructs and precisely defined semantics [Tot+14] to serve as a bridge between

engineering and formal models. This intermediate language also helps in the back-annotation

13

2.2 Design- and Runtime Assurance

Capture
- | Capture
. Requirements
Design l
Implement
Statechart T £3) Safety Rule
Transform | l System l
C ilc t Observe Compute
Intermediate Model omponent | L.omponent .- ---------- d

Transform | ! 2 Runtime Model Evaluation Plan
Safety Propert Formal Model \ A
Ve ; Read*. Generate Code
N Analyze,~ Back-Annotat ' .
ack-Annotate | Int ; ;

Model Checker femmmmo- R Runtime Safety Monitor
Legend: Design Time Artifact Design Time Activity Runtime Artifact Runtime Activity
e —_— 5 R - e-e----- 5 >

Figure 2.2: Overview of runtime verification in MoDeS3

of analysis results to statechart models. Formal verification is performed using the model

checker UPPAAL [Beh+06], which is widely used for verifying timing properties.

The generated formal models address the verification of a single component against local
properties as well as their interaction against global properties. However, these models are
insufficient to reason about the correctness of the system in themselves. For that purpose, one

needs to ensure the interaction between the physical world and the cyber world.

For this purpose, formal models are built to capture the (logical and physical) behavior of
trains. Then a combined design time verification can reveal potentially unsafe situations, e.g.,
if trains move too fast, some accidents cannot be prevented. Investigating the counterexample
retrieved by Gamma highlights that the situation could only happen if the trains are faster than
the messages transmitted between the components. Unless there is a denial-of-service attack
with flooding of messages, this is hardly the case in practice, but it is still a potential security
threat. After extending the statechart models with timing assumptions on communication
speed, we can formally prove that the safety logic prevents multiple trains from entering the

same section of the track.

2.2.2 Runtime Safety Monitors

As smart and safe CPSs have complex interactions with an evolving environment and the
physical world, we complement design time verification in MoDeS3 with runtime monitoring
techniques on both component and system level. We provide here a summary of the hierar-
chical system-level runtime monitoring technique using graph reasoning with runtime models

(see right part of Figure 2.2).

14

2.2 Design- and Runtime Assurance

As traditional monitoring techniques handle events but do not cover data-dependent be-
havior or structural properties, runtime knowledge about the operational system is captured
by a runtime model [BBF09]. A runtime model captures the current abstract snapshot of the
system and its operational context, and changes in the underlying running system are con-
stantly incorporated. Unlike a detailed design model, a runtime model only captures those
aspects of the system, which are relevant for runtime monitoring and intervention. We define

runtime graph models later in Section 3.1.1.

System-level safety monitoring is carried out using runtime graph queries, which detect
runtime violations of safety rules (by the identification of changes in the match sets of graph
queries) and trigger appropriate reactions. While graph models and queries are widely used
in design tools of CPS, their use in the context of smart and safe CPS is an innovative aspect
of the MoDeS3 demonstrator.

The right part of Figure 2.2 shows the steps during the design phase of automated monitor
synthesis where high-level query specifications are transformed into deployable, platform depen-
dent source code for each computing unit that will be executed as part of a monitoring service.
We present a local search-based query evaluation strategy later in Section 3.2 and introduce a
code generation approach from high-level specifications in Section 6.2. MoDeS3 reuses a high-
level graph query language, the VIATRA Query Language (VQL) [Var+16] for specifying safety

properties of runtime monitors, which is widely used in various design tools of CPS [Szt+14].

Example 1. In MoDeS3, there are several query-based monitors providing continuous
feedback about the state of the system as well as check for violations of safety rules. We
introduce them in increasing order of the length of their specification in VQL (see these
specifications in Appendix A). These queries are used later in the thesis in the evaluation

sections Section 6.3 and Section 9.3.

+ Train locations (tl): A simple query to find pairs of trains and segments that de-
scribe the locations of each train.

+ End of siding (eos): This query finds trains that are dangerously close (one seg-
ment distance) to an end of the track.

 Close trains (ct): The headway distance needs to be respected on the track, and
this query highlights locations where two trains are only one free segment away

from each other.

15

2.2 Design- and Runtime Assurance

« Misaligned turnout (mt): This monitoring rule detects a train approaching a
turnout but the turnout is set to the other direction (causing the train to run off
from the track).

2.2.3 Hierarchical Distributed Monitors

Figure 2.3 illustrates a self-contained excerpt of the demonstrator at runtime in which the
model railway system has an added layer of safety to prevent trains from colliding and de-
railing with the help of such data-driven runtime safety monitors. The system is managed
by a distributed monitoring service running on a network of heterogeneous computing units,
such as Arduinos, Raspberry Pis, BeagleBone Blacks, etc. In Figure 2.3, three of such comput-
ing units are running the monitoring and controlling programs responsible for managing the
different (disjoint) parts of the system. A computing unit may read its local sensors, (e.g., the
occupancy of a segment, or the status of a turnout), collect information from other computing
units, and it can operate actuators accordingly (e.g., change turnout state). All this information

is reflected in a distributed runtime model which is deployed on the three computing units.

- Data-Driven Data-Driven Data-Driven
Query-Based Monitoring Layer Monitor Monitor Monitor
. In-Memory In-Memory o In-Memory
Runtime Model Layer Graph Model 88 Graph Model f Graph Model 30
Sensing and Actuating Layer Device Drivers Device Drivers Device Drivers
Physical Layer Computing Unit 1 | | Computing Unit 2 | ___| Computing Unit 3

3 .

System Under Monitor m
+ Environment

Figure 2.3: Runtime monitoring by graph queries in the MoDeS3 demonstrator

Our system-level runtime monitoring framework is hierarchical and distributed. Monitors
executing graph queries may observe the local runtime model of a participant, and they can
collect information from runtime models of different devices, hence providing a distributed
architecture. Moreover, one monitor may rely on information computed by other monitors,

thus yielding a hierarchical network.

Alerts from the monitoring services may trigger control commands of actuators (e.g., to
change turnout direction) to guarantee safe operation. The monitoring and control programs

are running in a real-time setting on the computing units.

16

2.2 Design- and Runtime Assurance

Graph query-based runtime monitoring nicely complements traditional, component-level,
automaton-based monitors deployed to embedded computers since critical signals raised by
low-level monitors can be further propagated to the system-level as a hierarchy of events. As a
consequence, we obtain a technique for the runtime monitoring of system-of-systems [Vie+16]
where emerging and ad hoc hazardous situations can be incorporated and detected automat-

ically also in the presence of complex structural constraints.

2.2.4 Timing Analysis of Real-Time Monitors

Query-based monitoring programs use a network of linked objects as data structures and
exhibit heavily input-dependent complex control and data flow. While safety-critical programs
typically use statically allocated data with bounded input sizes and they conservatively avoid
many programming constructs, dynamically evolving data and advanced language constructs

are inherent parts of data-intensive programs which can jeopardize timing predictability.

A wide range of existing timing analysis techniques (implemented in various tools such as
aiT [FHO04], Chronos [Li+07], OTAWA [CS06], and SWEET [Lis14]) can provide safe and tight
WCET bounds for traditional critical embedded software. The most common technique used
in state-of-the-art timing analyzers is the implicit path enumeration technique (IPET) [LM95]
which relies on solving an integer linear program (ILP) at design time. However, there is a high
degree of inherent design time uncertainty present in query-based monitoring programs. In
particular, the unknown contents of the runtime knowledge graph capturing the system and
its operating environment constitutes an enormously large input space which can compromise

the accuracy of existing techniques.

To support the timing analysis of runtime monitors of MoDeS3, we combine WCET anal-
ysis with advanced graph solvers to efficiently find inputs up to a predefined size where the
monitor is expected to take the longest to execute (referred to as witness model) and use the
computed execution time over this model as the WCET. Furthermore, we provide a comple-
mentary approach to support cases where the runtime model exceeds the size of the witness
model. In this latter case, we rely on a symbolic WCET formula which is instantiated using

condensed model statistics about the snapshot of the underlying runtime model.

17

2.3 Summary

2.3 Summary

Modern smart and safe CPSs efficiently combine intelligent data processing features with
safety-critical functionality. MoDeS3 is an educational demonstrator of an intelligent railway
system, which was developed to showcase challenges present in the design and operation of
such systems. This thesis relies on the demonstrator as a case study for data-driven runtime
monitors. The MoDeS3 educational demonstrator was first presented in [c6], and I took part
in the development of the hardware and software as lead architect for one year prior to join-
ing McGill University, and have also made major contributions to the hierarchical runtime
monitoring software component. Several students and colleagues participated in this project,
and the coauthors of the related the paper had the following responsibilities. Andras Voros
was leading the project. Istvan Rath, Akos Horvath, Zoltan Micskei, and Daniel Varro helped
the work as advisors and provided ideas about what the demonstrator should feature. Lasz16
Balogh, Benedek Horvath, and Zsolt Mazl6 worked on the implementation. Despite my con-
tributions, due to the highly collaborative nature of the work, I do not claim novel scientific

contributions related to the core MoDeS3 demonstrator platform.

18

Background for Query-Based Monitors

The present chapter overviews core concepts used throughout this thesis. Definitions included
here come from the fields of domain-specific modeling, graph queries, and domain-specific

graph model generation.

The first part in Section 3.1.1 provides formal definitions for metamodels and instance
models and Section 3.1.2 describes basic model update operations, both of which are neces-
sary for Chapter 5 and Chapter 8, then Section 3.1.3 shows how one can formulate graph
queries using first-order logic. Section 3.2 discusses the local search-based graph query eval-
uation algorithm employed in Chapter 6 and Chapter 9. Section 3.3 gives an overview of gen-
erating well-formed models for a domain which we use as a technique to innovatively derive
worst-case execution time bounds for query-based runtime monitoring programs in Chap-
ter 7. Finally Section 3.4 introduces the Data Distribution Service which is the underlying
communication standard in our distributed runtime model and distributed query evaluation
framework introduced later in Chapter 8 and Chapter 9. Figure 3.1 depicts the concepts and

their usage in this thesis.

3.1 Runtime Models

Runtime models serve as a rich knowledge base for the system by capturing the runtime status
of the domain, services, and platforms as a graph model, which serves as a common basis
for executing various analysis algorithms. The following sections provide the fundamental

definitions required to introduce runtime models and queries over them.

19

3.1 Runtime Models

Runtime Models for Embedded Systems Query-Based Monitors for Embedded Systems WCET Analysis of Query Programs
Chapter 5 Chapter 6 Chapter 7
LN L\l I
Y Y ¢ $ v v Y
Metamodels Instance Models Graph Queries Query Evaluation Data Distribution Service Model Generation Task
T A A A T
[[d
Distributed Runtime Models Distributed Query Evaluation
Chapter 8 Chapter 9

Legend: [Concept | [Contribution] uses

Figure 3.1: Concepts introduced in this chapter and their usage later in the thesis

3.1.1 Metamodels and Instance Models

The core concepts (classes) in a domain, their attributes, and the relations (references) between
those concepts are often captured in a metamodel. Additionally, a metamodel can include de-
rived features (i.e., computed types which are based on other domain elements) represented
by model queries. In this thesis, we formally capture metamodels by a logic signature and

instance models as logic structures following [MSV18].

Definition 1 (Metamodel). A metamodel is formally represented as a logic signature
2={Cy....Cm A1,...,Ap,Rs,...,R0, Q5. . -, qp} and an arity function a: ¥ — N, where
{C;}, are unary class symbols (with a(C;) = 1), {A; };?:1 are binary attribute symbols (with
a(A;) = 2), {Re}y_, are binary relation symbols (with a(Ri) = 2), and {ql}llo=1 are n-ary
query names (with @(q;) € N).

Definition 2 (Instance model). An instance model over a metamodel ¥ is a logic structure
M = (D, Iy) where Dy = Op U V) is the model domain where O is a finite set
of objects in M while V) is the set of (built-in) data values (integers, strings, etc.). Zy

provides interpretations for the class, attribute, and reference predicates in X such that

o I)(C;) C Oy is the set of objects of type C; for each C; € 3,

o In(Aj) € Oum X Vi is the set of objects with attribute values of type A; for each
Aj €%, and

o Iy(Rg) € Op X Oy is the set of relation links of type Ry for each Ry € 3.

Based on the models@runtime paradigm [BBF09; SZ13], runtime model refers to the con-

tinuously updated graph data structure that serves as the up-to-date knowledge base about

20

3.1 Runtime Models

the system. At any given point, a snapshot of the runtime model is accessible, and this snap-
shot can be represented by an instance model. In contexts where it is not confusing, we may

use the term runtime model as a shorthand for snapshot of the runtime model.

To provide a condensed characterization of instance models, we will collect various model
statistics at runtime. For simplicity, we will restrict our attention to the type distributions

(number of objects of each type).

Definition 3 (Model statistics). The model statistics for an instance model M is a func-
tion statsy,:

{C1,...,C;} — N which denotes the number of objects of type C;, i.e. statsy(C;) =
| Zm(Ci) |-

J | Modes3ModelRoot |

| = id : uint_32 I try
[0..2] connectedTo

[0.7] trainsi I[O..*] segments
S2 tuo S1
|] Train [Segment Hitt
= id : uint_32 [0..1] occupiedBy | = id: uint_32 s
0

= speed : double = 0.0

try

[1] location s
S3 d tro

Z‘% T[ﬂ straight T (1] divergent i i

1 P
[0.7] turnouts £ Turnout _‘)@:S?mzs&

(a) Metamodel with metamodel constraints (b) System snapshot presented as an in-
stance model with the following model
statistics: 7xSegments, 2xTurnouts, 3xTrains

Figure 3.2: The MoDeS3 metamodel and instance model

Example 2. An excerpt of the MoDeS3 metamodel with metamodel constraints is shown
in Figure 3.2a using the Eclipse Modeling Framework (EMF) notation!. A model has ex-
actly one Modes3ModelRoot that contains all other objects within the model (as sug-
gested by the containment references). One domain concept is Train. Class Segment rep-
resents a section of the railway track with the connectedTo reference which describes
what other segments it is linked to (up to two). Moreover, each train maintains a location
reference to a segment to describe its current position, while the direction of a train is not
captured in the model to keep the presentation of the example short. Likewise, instances
of the Segment class maintain a reference occupiedBy to express if they are currently

occupied by a train. Moreover, a Turnout is a Segment that can change its connections be-

21

3.1 Runtime Models

tween straight and divergent segments. In this example, {Modes3ModelRoot, Train, Seg-
ment, Turnout} C ¥ are unary class predicates, while {Location, OccupiedBy, Connect-
edTo,Divergent, Straight, Trains, Segments, Turnouts} C X are binary reference
predicates. Furthermore, {Id, Speed} C X are binary attribute predicates which describe

if a model object stores a given value as its respective attribute.

Figure 3.2b shows a graphical presentation of an instance model capturing a snapshot
of the MoDeS3 demonstrator with the following model statistics. The graph has a total of
12 objects. There are 9 Segment instances with their respective connectedTo references
depicted as gray arrows, and two of them are also instances of Turnout. The turnout rep-
resented by tuy is capable of switching between segments s, and s4, while tu; is capable
of switching between segments s3 and s;, which shown by the dashed blue arrows. Ad-
ditionally, there are three trains on the track try_, with their respective locations being

Se, S0, and s, as marked by the black arrows.

3.1.2 Update Operations on Runtime Models

In order to be able to capture the contextual information of the underlying system, runtime

graph models need to support the following update operations:

+ Object create: This operation adds a new object 0, to the graph model. Formally, a
new 0ne € Oy is created and the interpretation of its class symbol C; is changed such
that 0pe € Z3((Cy).

+ Object delete: This operation is the inverse of object create. It removes an object 0geete
from the graph model. Formally, 04.ere ¢ Op is enforced and the interpretation of its
class symbol C; is changed such that 0gejete € Zp1(C;).

+ Attribute update: The old value v,q € Vi of the attribute A; of object 0 € Oy is
replaced with vpe, € V) when this operation completes. Formally, (0,v,4) ¢ Zy(A))
and (0, vpew) € Zp(A;) are enforced.

+ Link add: This operation creates a link of type Ry between o5, € Oy and 045 € Oy
Formally, (0, 01rg) € Zp(Ry) is ensured.

« Link remove: This operation is the inverse of link add, and it removes a link of type Ry

between o € Oy and 04 € Oy Formally, (0, 0rg) ¢ Zr(Ri) is ensured.

http://www.eclipse.org/emf

22

http://www.eclipse.org/emf

3.1 Runtime Models

Before each model update, the model manipulation middleware needs to ensure the ap-
propriate consistency level. Applications that have higher consistency criteria may refuse a
requested operation if the resulting model would violate a well-formedness constraint. Such

well-formedness constraints are introduced in the subsequent section.

3.1.3 First-Order Logic Predicates for Queries Over Graph Models

First-order logic (FOL) predicates formulated using the metamodel symbols in ¥ can be evalu-
ated as graph queries over the logic structure of an instance model. Informally, base predicates
check either for equality or for the existence of certain objects, attribute values, and references
of a respective type (predicate) in the underlying graph model. Then complex predicates are
derived by traditional FOL connectives (not, exists, forall, and, and or). Query hierarchies can

be composed via query calls.

Definition 4 (Syntax of graph predicates). First-order graph predicates can be inductively

constructed using the following rules.

+ The constants 1 and 0 are atomic predicates.
+ Ci, Aj, and Ry are atomic predicates.
« If ¢; and ¢, are predicates and u and v are variables, then the following expressions

are predicates:

u=u, -1, Fo: ¢, Yo: @1, 01V @2, and 1 N Q3.

Definition 5 (Graph query). A query q € X is defined by the first-order logic predicate

¢q(v1,...,0,), where vy, . . ., v, denote free variables (not appearing in any quantifiers) of

@q-

between variables of a predicate and elements of the model domain. A variable binding

Z, is a partial binding if it maps only a subset of the variables of a predicate to Dj,.

Definition 7 (Semantics of graph predicates). A graph predicate can be evaluated over

| Definition 6 (Variable binding). A variable binding Z: {v1,...,v,} — Dy is a mapping
‘ an instance model M along a variable binding Z: {vy,...,v,} — Dy (denoted as [[(pq]]g)

23

3.1 Runtime Models

to return either true (1) or false (0) as follows:

[y =1 [0] =0 [Ci()]Y = 1iff Z(0) € Ty(Cy)
[A;(w,0)]¥ = 1iff (Z(u), Z(v)) € Tu(A) [Re(w,0)]) = 1iff (Z(w), Z(v)) € In(Ry)
[u=oly = 1iff Z(u) = Z(v) [-¢]7 =1~ o7
[Fo : @]} = maxyeo, {[¢]7 0y} [Vo : @]} = mineeo, {[¢] o}
[o1V @2l = max([p:]}, [02]) [o1 A @2y = min([p:]}, [02])

la(oy, - .,Un)]]g =3Z":Z CZ' AVietp.mpZ(vi) = Z'(v5) : [q (0], .. ,02)]]%4,

Definition 8 (Predicate evaluation). Graph predicate (or query) evaluation aims to find
all variable bindings Z: {vy,...,v,} — Oy for a predicate ¢ that maps all free variables

of the predicate to objects of M such that the predicate evaluates to true, i.e., ﬂ(p]]g[=1

Definition 9 (Match set). The match set of a query predicate ¢ with free variables
01,...,0, 18
Matches(M, ¢) = {Z: {v1,...,0,} — O | [[(p]]é’l =1}.

One element in this set is called a match, while |Matches(M, ¢)| denotes the size of the

match set.

Note that in our context, a match of a query will typically represent a violation of a well-

formedness constraint of the domain or a hazardous situation with respect to a safety property.
Metamodel and well-formedness constraints

A domain metamodel is frequently complemented in practice with additional metamodel
and well-formedness (WF) constraints to restrict the possible relationships between domain
concepts. Metamodel constraints can be captured by FOL predicates and categorized as fol-
lows [MSV18].

1. A type hierarchy constraint defines a type system by supertype relations. For each
object o, there shall be a single class C, such that for any class object o is instance of C’
iff C’ is a supertype of C.

2. A type compliance constraint restricts the classes C; and C; of objects at the ends of

a reference R: Yoy, 05 : R(01,02) — C1(01) A Cy(02).

24

3.1 Runtime Models

3. A multiplicity constraint may be placed on lower bounds on the number of references
adjacent to an object 0: Jo;...0; : Rj(0,01) A ... ARj(0,0) A (Fi,j € {1...1} : 0; =
0j <> i = j). Similarly, the same can be said for required upper bounds for a reference
adjacent to 0: Joy...0, : (Rj(0,01) A ... ARj(0,0,) A (Ti,j€{l...u}:0,=0j < i=
j)) = Ao’ :Rj(0,0) Aoy #0' A... Aoy #0

4. An inverse relation constraint prescribes that references R and R’ always occur in
pairs: Yoy, 05 : R(01,02) <> R’(02,01).

5. A containment hierarchy constraint ensures that models are arranged in a strict tree

hierarchy via the containment references starting from a root object.

Example 3. The formula ¢ry illustrates a constraint of the metamodel for location mul-
tiplicity (LM). This formula evaluates to 1 for an object passed as a parameter if it is
of type Train and it does not have exactly has one segment as its location (i.e., has
zero or more than one). A query can be defined with the following formula: ¢\ (t) =

Train(t) A (=(3sy, sy : Location(t, s1) A Location(t,sy) — s; = s2) V=(3s : Location(t,s)).

WEF constraints of the domain can also be captured by FOL predicates [SV17; SNV18]. When
a constraint is formalized as a FOL predicate, it captures erroneous model fragments. As such,
we expect that the respective FOL predicate has empty match sets in a model. Formally, if
a WF constraint captured by FOL predicate ¢, then Matches(M, ¢) = 0 for all well-formed

instance models M.

Example 4. The metamodel constraints of the MoDeS3 domain shown in Figure 3.2a
allow the creation of a model that has no real-life counterparts. For example, metamodel
constraints allow the creation of a Turnout that has two connectedTo references to two
distinct Segments, but none of these Segments are the continuation of the Turnout in
the straight or divergent directions. Such a turnout in an instance model would repre-
sent a physically impossible situation, therefore we exclude such cases from our analysis
by introducing a WF constraint TurnoutWithErroneousConnections captured by the

following FOL predicate:

@1ec(t) = Turnout (t) A 3sy, s, : ConnectedTo(t,s1) A ConnectedTo(t,s2) A =(s; = s2)

A =(StraightOrDivergent(t,s1)) A =(StraightOrDivergent(t,s;)),

25

3.1 Runtime Models

where the called subquery StraightOrDivergent defined by the formula ¢gp checks if

a Segment is a straight or divergent direction of a Turnout:

@sp(t,s) = Turnout (t) A Segment(s) A (Straight(t,s) V Divergent(t,s)).

Support for model constraints in modeling tools

In many industrial modeling tools, domain-specific WF constraints are captured either as OCL
invariants [The14] or as graph queries [VB07; NNZ00]. We use FOL to formalize such con-
straints, which can be efficiently evaluated by underlying query engines like [Ujh+15] to vali-
date models. The prototype implementations presented in this work rely on the syntax of the
VIATRA Query Language (VQL) [Ber+11] in the definition of graph queries.

The expressiveness of the VQL converges to first-order logic with transitive closure, thus
it provides a rich language for capturing a variety of complex structural conditions and de-

pendencies between various entities in a graph model.

Example 5. Listing 3.1.1 shows the query TurnoutWithErroneousConnections for-
mulated in VQL. It is defined by the predicate ¢rrc from the previous example to identify
illegal Straight or Divergent continuations of a Turnout is shown below using the syn-
tax of VQL. The formulation of the query employs a subquery StraightOrDivergent
that accepts pairs of a Turnout and a Segment that are either in Straight or in Divergent

connection. Comments next to each line show the corresponding FOL predicate.

pattern TurnoutWithErroneousConnections(t: Turnout) { // @tEc(t) = Turnout(t)
Segment . connectedTo(t, s1); // A3dsy,s; : ConnectedTo(t,s1)
Segment . connectedTo(t, s2); // AConnectedTo(t,s;)
sl 1= s2; // A=(s1=s3)
neg find StraightOrDivergent(t, s1); // A-(StraightOrDivergent(t,sy))
neg find StraightOrDivergent(t, s2); // A-(StraightOrDivergent(t,sz))
}
private pattern StraightOrDivergent(t: Turnout, s: Segment) { // ¢sp(t,s) = Turnout(t) A Segment(s)
Turnout.straight(t, s); // Straight(ts)
}or { // vV
Turnout.divergent(t, s); // Divergent(t,s)
}

Listing 3.1.1: Query capturing illegal connections of a turnout

26

3.2 Local Search-Based Graph Query Evaluation

3.2 Local Search-Based Graph Query Evaluation

Graph query evaluation or graph pattern matching (see Definition 8) is the process of finding
all matches of a query over a specific model [VAS12; Var+15]. When query evaluation is initi-
ated, an initial variable binding is gradually extended to retrieve matches from the model. In
the distinguished case, when this initial variable binding is empty (i.e., does not map any free
variables of the query to any element of the domain set D)), query evaluation seeks matches

from the entire model.

Various query evaluation strategies exist in the literature [Gal06]. Our runtime monitoring
framework uses a local search-based query evaluation strategy to find matches of monitoring
queries based on [Var+15]. To obtain efficient performance at runtime, query evaluation is
guided by a search plan [Var+15], which maps each predicate in the query to a single pair of
(Step number, Operation type). In this tuple, the first value specifies the order in which query
evaluation should attempt to satisfy the respective predicate. The second value can be either

extend or check, depending on the current variable binding while the predicate is evaluated:

+ An extend operation evaluates a predicate with at least one free variable. Execution of
such operations requires iterating over all potential variable substitutions and selecting
the ones for which the predicate evaluates to 1.

+ A check operation evaluates a predicate with only bound variables. Execution of such

operations determines if the constraint evaluates to 1 over the actual variable binding.

The calculation of query search plans is out of scope of the current work, but they should
be created and optimized based on domain-specific information about the model statistics of
the models queries are evaluated on. Search plans were shown to be highly efficient if they

are updated as the properties of the undelying model changes [Var+15].

Example 6. Table 3.1 shows a possible search plan for the TurnoutWithErroneousCon-
nections query. Each row represents a search operation. The first column is the assigned
operation number (Index). The second column (Predicate) shows which predicate is eval-
uated by the given step and the third column shows the variables that are already bound
by the previous operations when the current operation begins execution. The fourth col-
umn shows the search operation type (check or extend) which is based on the variable

bindings prior to the execution of the search operation: if the predicate parameters are all

27

3.2 Local Search-Based Graph Query Evaluation

bound, then it is a check, otherwise, it is an extend. For extend operations, we underline

the variable that is bound by the step.

Table 3.1: Search plan for query TurnoutWithErroneousConnections

Index Predicate Bound variables Search op. type
0 Turnout () 0 extend
1 ConnectedTo(t,s1) {t} extend
2 —StraightOrDivergent(t,s1) {51} check
3 ConnectedTo(t,s2) {t,s1} extend
4 —StraightOrDivergent(t,s;) {t,s1,52} check
5 =(s1 =s7) {t,s1,82} check

The search plan in Table 3.1 is considered typical as it executes check operations as
early as possible. Check operations are relatively simple to perform compared to extend
operations, thus early execution helps excluding variable bindings that will not yield a
match. Furthermore, except for the first step, the search plan always binds one variable
at a time via navigating on an edge, this way it avoids costly Cartesian products when

finding candidate variable bindings.

The pseudocode of a recursive query evaluation algorithm which interprets a search plan
given as input to find all matches over a (centralized) model is shown in Algorithm 3.2.1. The
recursive EXECUTEQUERY function takes the query g, the index idx of the current operation in
the search plan, and a partial binding Z, (i.e., a binding that may not bind all free variables of
the query) as parameters. In line 2, the executor looks up the search plan for the given query
from a global storage. Then, in line 3, the algorithm checks if idx points to the end of the
operation list. If this is the case, a match has been found and should be returned. Otherwise,
the matching procedure continues by initializing an empty match set (line 4) and extracting the
predicate enforced in the current search step and storing this predicate to PRED (line 5). Based
on the variable bindings at the current stage of the query evaluation, the algorithm categorizes
the current operation as either an extend or a check in line 6. In case of an extend operation
(lines 7-13), all potential variable bindings are calculated (lines 7-8) and the predicate PRED is
evaluated on them (line 9). For each new partial binding Zj, obtained this way, the matching
process recursively continues with the next search step (lines 10-11). If the current search
operation is categorized as a check and the execution continues in line 14, then PRED is applied
over the values mapped by Z, partial binding. If this evaluation returns 1, the evaluation

proceeds recursively with the next search operation (line 15-16). Finally, in line 18, all matches

28

3.3 Model Generation Problems

found in subsequent search steps are returned. To find all matches in the model for query q,

EXECUTEQUERY should be called with parameters (g, 0, Z,) (lines 20-22).

Algorithm 3.2.1: Query execution algorithm outline

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22

end

Function EXECUTEQUERY(q, idx, Zp) is

searchPlan «— LookuPPLAN(q)
if size(searchPlan) = idx then return {Z,};
matches «— 0
PRED « predicate evaluated by searchPlan[idx]
if searchPlan[idx] is extend then
for e in {all candidates in Dy} do
Z;, — ZpU{op e}
if [PRED]Y, = 1 then
P
next «— idx+1
matches «— matches U EXECUTEQUERY(q,next,Z;,)
end
end
else if [[PRED}]ZID =1then

next « idx +1

matches—matches U EXECUTEQUERY(q,next,Zp)
end

return matches

Procedure FINDALLMATCHES is

end

allMatches « EXECUTEQUERY(q, 0, 0)

3.3 Model Generation Problems

The challenge of model generation lies in the very large number of the possible relationships

between various objects in a model. Metamodels capture classes and relationships that can

be present in an instance model, while well-formedness rules pose additional constraints on

how different relationships can be added between objects, or what attribute values objects

may have. The complexity of metamodels and WF constraints necessitates the need of using

advanced algorithms for generating models.

Automated synthesis of domain-specific graph models has been actively researched in the
field of model-based software engineering [SNV18; SVV16; Bro+06; FSB04]. Hereby, we revisit

some core concepts.

A model generation task takes the following four required inputs:

o A metamodel ¥ with {Cy,...,Cp, Ay, ..., ARy, ..

predicate symbols.

29

.,Ro} C X class, attribute, and reference

3.3 Model Generation Problems

« A theory of constraints 7 = {¢1, ..., ¢,} expressed as FOL (error) predicates.

« Type scopes S: {Cy,...,Cr} — IVy, where IVy is the set of natural number intervals.
Type scopes specify the minimum and the maximum number of instances of objects by
type, i.e., if S(C;) = [L;, U;], then solution models must contain at least L; and at most
U, instances of the class C; € 3.

« An objective function which is a linear function that assigns a real number to a model
based on the number of matches for selected predicates and assigned weights. Formally,
a linear objective function is f(M) = X1, |Matches(M, ;)| - w;, where 1; are predicates

and w; € Z are weights.

Definition 10 (Theory and scope satisfaction by a model). An instance model M satisfies

theory 7 and the type scopes S, written as 7, S £ M, if

« no constraints are violated, i.e., for all error predicates ¢ € 7: Matches(M, ¢) = 0,
and

« the number of model elements of a specific type satisfy the type scope (written as
S E statsyy); formally, for all class symbols C; € 3, statsy;(C;) € S(C;).

Definition 11 (Solution of model generation). The solution of the model generation task
is a set of models that are instances of the input metamodel, satisfy all constraints, and

respect the type scopes:

solutions(X, 7,8) = {M | M is an instance of the metamodel ¥ and 7, S £ M}.

Definition 12 (Optimal solution of model generation). The optimal solutions of the model

generation are solution models that maximize the value of the linear objective function.

optimal(3, T, S, f) =
{M € solutions(Z, T, S) | YM’ € solutions(Z,T,S) : f(M') < f(M)}.

Our work in Chapter 7 relies on the model generator presented in [SNV18] which was
proved to be complete and sound in [Var+18]. Informally, it is able to derive all instance models

in a domain (up to a designated size defined by the scopes) which satisfy the constraints.

30

3.3 Model Generation Problems

Example 7. Figure 3.3 presents three different instance models from the MoDeS3 do-
main (see the metamodel in Figure 3.2a) to illustrate the model generation problem.
Well-formedness constraints for the ConnectedTo references are defined and added to
7 below: a connection between two segments needs to be symmetrical (captured by the
formula @symm-conn) and a segment cannot be connected to itself (captured by @ref1—conn)-
Furthermore, a model scope § is provided to limit the maximum number of objects of a
given type (up to three Segments, two Trains, and one Turnout). Finally, an objective
function f is defined that is maximized by the optimal solutions. This function counts
the number of objects in the model (all types have the same weight assigned), and counts
the pairs of trains which are adjacent to each other, i.e., are located on segments which

are directly connected to each other.

@symm—conn(S1, $2) = ConnectedTo(sy, sz) A ~ConnectedTo(sy, s1) €T,
@refl-conn(s) = ConnectedTo(s, s) eT
S(Segment) = [0, 3], S(Turnout) = [0,1], S(Train) = [0, 2]

f (M) =statsp(Segment) + statsyr(Turnout) + statsy(Train)

+ number of adjacent Train pairs

First of all, all three models presented in Figure 3.3 respect the model scope S, i.e., there
are not more instances of the types (Segment, Turnout, Train) than the predefined upper

bounds (3,1,2, respectively) and there are no lower bounds set by S.

The first model M, in Figure 3.3a is not a well-formed instance model, because both
@symm—conn aNd @refi—conn have matches, thus the well-formedness requirements are vi-
olated: a connection between sy and s, exists but not the other way around; and s, is
connected to itself. Due to these these well-formedness constraint violations, M, is not

considered to be a solution to the model generation problem.

Model My, on the other hand, is a well-formed model part of the solution set, i.e., this
model is derived by the model generator. The objective function f(M;) = 6 is, however,

not maximized by M, because the trains in the model are not on adjacent segments.

Finally, M, represents an optimal solution. It both respects the model scope, satis-

fies all well-formedness constraints, and maximizes f(M,) = 8, because it has two pairs

31

3.4 The Data Distribution Service Middleware

tr() trl tro trl tr() tﬂrl
Ss Jy So tug Sz So tug i 5.2.1.'. L S0 W . tuo
P %
i fimr fitt
(a) Objective function value (b) Objective function value (c) Objective function value
of f(Mg) =3+1+2+0=6 of f(Mp) =3+1+2+0=6 of f(Mc) =3+1+2+2=38

Figure 3.3: Three instance models from the MoDeS3 domain

of adjacent trains ({trotr;) and (trytry)) in addition to having the maximum number of

model objects allowed by the scope.

3.4 The Data Distribution Service Middleware

The OMG specification for Data Distribution Service (DDS) [Par03] provides a common appli-
cation-level interface for data-centric implementations over a publish-subscribe communica-
tion model. Additionally, the specification defines the main features suitable for application
in embedded self-adaptive systems. Since we rely on DDS and its services for building trust-
worthy distributed applications in Chapter 8 and 9, we provide an overview based on the DDS

Architecture Overview by Pardo [Par03].

In data-centric systems, every data object is uniquely identified in a virtual global data
space (shortly, GDS), regardless of its physical location. For this reason, both the applications
and the communication middleware need to provide support for unique identifiers of data
objects. Furthermore, this identification enables the middleware to keep only the most recent
version of data upon updates, thus respecting the performance and fault-tolerance require-
ments of real-time applications (that make a centralized solution impractical). By keeping the
most recent data, the middleware can provide up-to-date information to new participants of

the network.

A simplified UML class diagram containing the concepts of DDS that implement the publish-
subscribe communication model is depicted in Figure 3.4. Participant is the top-level entity
in a DDS application, so we assume that each deployed program has exactly one instance
of it, and we refer to communicating programs as participants. Participants may have an ar-

bitrary number of Subscribers and Publishers that handle the actual reading and writing of

32

3.4 The Data Distribution Service Middleware

data, respectively. DataReaders and DataWriters are contained within Subscribers and Pub-
lishers. The sole role of DataWriters is to inform their corresponding Publishers that the
state of the data object is changed, i.e., calling DataWriter::write() will not necessarily cause
immediate communication. Similarly, the task of a Subscriber is to decide when to invoke

DataReader:take() that reads the new data values.

Participant
/' ‘\

Publisher . : Subscriber
DataWriter QosPolicy DataReader
* 1 *
+write() R | +take()

1 Topic ¥
1
DataType

Figure 3.4: UML class diagram of DDS classes

Unlike classic publish-subscribe protocols?3, a Topic is more than a routing label for mes-
sages in DDS: a Topic is always associated with exactly one predefined DataType. For each
DataType, a set of attributes are configured to serve as a key, thus the topic and the key to-
gether are used for identifying data objects in the global data space. Additionally, this coupling
between Topic and DataType (with additional QosPolicy settings) enables optimizations such

as pre-allocating the resources needed to send or receive messages of a Topic.

Real-time DDS by [KKS12] is an extension of the DDS standard, which tailors DDS to fit
the need of real-time application scenarios. Among other novelties, the work also shows how
quality of service (QoS) and quality of data (QoD) specifications can be used to ensure reliable
and timely messaging, even over unstable or slow networks. Additionally, DDS is also capable
of detecting and reporting violations of QoS contracts to participants. Thus we may assume

reliable and timely delivery of messages by the underlying middleware in the current work.

2https://mqtt.org/
Shttps://www.amqgp.org/

33

https://mqtt.org/
https://www.amqp.org/

3.5 Summary

3.5 Summary

This section provided foundations for the rest of the thesis by defining core concepts and
introducing basic techniques and algorithms in a precise way. This includes formal definitions
of metamodels, instance models, graph queries, and the model generation problem. Moreover,
we described runtime graph models and the local search-based query evaluation technique.
Finally, we provide an overview of the Data Distribution Service standard that provides a

decentralized publish-subscribe protocol for distributed systems.

34

Related Work

This section gives an overview on the current state-of-the-art in four general topics: (1) run-
time models, (2) distributed dynamic graphs, (3) runtime monitoring and (4) worst-case exe-
cution time analysis. The topics included here cover the fields relevant to the contributions

presented in the subsequent chapters of this thesis.

4.1 Runtime Models

4.1.1 Concept of Models@Runtime

A holistic vision about models@runtime was presented by Blair et al. [BBF09]. They see run-
time models as means to enable online execution of important tasks that currently require
safety-critical systems to be offline, thus yielding significant benefits. Examples of such tasks
are the self-* properties, such as reconfiguration to optimize performance (self-adaptation)
and recovery from errors (self-healing). Our runtime graph model presented in this thesis is

an implementations of the models@runtime concept.

The concept of Liquid Models [MW16] refers to the feedback loop from models@runtime
to the design time model artefacts. This paper identifies four major research challenges in
connection with the gap between design time and runtime concepts, namely (1) integration of
distributed and heterogeneous data streams, (2) providing a reactive model stream processing
mechanisms, (3) realizing scalable model mining techniques on top of model streams and (4)
propagating back and capturing the observed knowledge from operation to design models.
The first three challenges are closely related to the management of runtime models, while

the last one is focusing on the feedback for design time. Their key idea is that sensor data

35

4.1 Runtime Models

streams available at runtime should be combined with advanced algorithms to refine models
(not only graph models) created at design time. The authors see DDS [Par03] as a key enabler
technology that allows timely and reliable data delivery, which we have successfully employed

in our distributed monitoring framework.

The MegaM@Rt2 ECSEL Project [Afz+17] is a proposal from 2017 to solve recent chal-
lenges in real-world MDE scenarios with a special focus on CPS: quality assurance for devel-
opment, integration, and maintenance, as well as ensuring traceability between design time
and runtime. MegaM@Rt2 aims to deliver a framework of tools and methods for (1) systems
engineering and continuous development, (2) related runtime analysis, and (3) global model
and traceability management, respectively. A follow-up of the proposal [Cru+20] provides a
summary of the diverse open-source tooling that was built during the project. Nevertheless,
the developed tools in the project are aiming to assist runtime verification of CPS focusing on

temporal behavior rather than employing data-driven monitors.

4.1.2 Frameworks for Models @Runtime

The models@runtime paradigm [BBF09; SZ13] serves as the conceptual basis for the Kevoree
framework (KMF) [Mor+14]. This framework originally aimed at providing an implementation
and adaptation of the de facto EMF standard for runtime models [Fou+12]. KMF allows sharing
objects between different nodes, as opposed to our current work where the model elements
can only be modified by their host participant, thanks to the single source of truth principle.
Additionally, several assumptions applied to KMF heavily depends on the Java programming
language and the Eclipse modeling framework, which questions its applicability to resource-

constrained environments.

In their more recent work, the authors of KMF introduce GreyCat [Har+19], an implemen-
tation for temporal graphs. By adding timestamps to graph nodes, it allows identifying a node
along its individual timeline. The tool can be used on top of arbitrary storage technologies,
such as in-memory or NoSQL databases. As opposed to our approach, they use a per-node

locking approach to prevent inconsistencies in the graph.

Other distributed, data-driven solutions include the Global Data Plane (GDP) [Zha+15].
This work suggests a data-centric approach for model-based IoT systems engineering with a
special focus on cloud-based architectures, providing flexibility and access control in terms of

platform components and data produced by sensors. However, data in this case is represented

36

4.2 Distributed Management of Dynamic Graphs

by time series logs, which is considered as low-level representation compared to abstract graph

models employed by our approach.

Adaptive exchange of distributed partial models was studied by Goétz et al. [Got+15]. The
authors propose a role-based model synchronization approach for efficient knowledge shar-
ing. First, they identify three strategies for model synchronization. Then, with the help of dif-
ferent roles, they show optimizations for knowledge sharing in terms of performance, energy
consumption, memory requirements, and data privacy. Furthermore, the authors only pro-
vide implementation recommendations, but the work lacks practical evaluation of the idea.
In contrast, data ownership is exclusive and is determined by the platform in our approach.
Furthermore, we provide the computation of global, system-wide queries based on the infor-

mation partitioned data across the platform.

The framework CHROMOSOME (or shortly, XME) [Buc+14] offers tools to compose a
modular architecture of a system that enables adding and removing applications and adapting
to changes in the hardware topology while still respecting requirements typical in embedded
systems for each component (e.g., timing, safety). They consider two types of adaptivity, sys-
tem dynamics and reflection. The former refers to the ability of adapting to appearing and dis-
appearing platform participants, which corresponds to fault tolerance. Reflection, on the other
hand, means that the system can interpret the services it provides and is able to adapt its func-
tionality to provide optimal performance, such as routing network traffic to a different, less
busy channel. XME shares several concepts with other projects, such as providing a general
platform abstraction layer in a similar way as it is in ROS [Qui+09], allowing plug & play sup-
port in RACE [Som+13], or providing (a subset of) QoS guarantees included in DDS [Par03].
In essence, the focus of XME lies in modeling the platform and the running services, which is

more specific than our conceptual runtime model which is domain independent.

4.2 Distributed Management of Dynamic Graphs

4.2.1 Management of Graphs in Distributed Systems

In the book on Graph Data Management [SL18], Shao and Li provide an overview of the
challenges of storing, processing, and querying (i.e., finding patterns in) large graphs having
100M+ elements. They also compare the capabilities of 15 representative graph processing
systems, and dissect the challenges that stem from the distributed nature of the underlying

storage. There are some quantitative comparisons of run times for a few scenarios of such

37

4.2 Distributed Management of Dynamic Graphs

systems, however, these are based off mathematical calculations considering their underlying
computation complexity. Finally, they discuss some approximation algorithms and alternative
graph representation forms, namely matroids and graph embedding, that can potentially speed

up otherwise complex operations, but no specific details are provided.

LEOPARD [HA16] is a dynamic, edge-oriented graph partitioning algorithm for distributed
graph storages. The main goal is to achieve a graph partitioning in which the ratio of cut edges
is low, i.e., both ends of edges are in the same partition. They approach the partitioning prob-
lem by saying that dynamic graphs are very much similar to solving the one-pass partitioning
problem, as the changes to the graph can be regarded as a stream. LEOPARD can dynamically
select vertices and reassign them to new partition time to time in order to keep the cut ratio
low. Furthermore, vertex replication follows the Minimum-Average Replication Algorithm (also

presented in the paper) that tells how many copies and where those copies should be created.

In general, a fundamental difference between the runtime graph management protocol
proposed in this thesis and the available data partitioning algorithms in large graphs is the
decision about allocation of a given graph element. While in database systems, data can be
allocated at a selected location and it can be moved to optimize performance, our assumption
in distributed CPSs is that data is available at the location where it is created (e.g., from a

sensor reading).

4.2.2 Graph Pattern Matching

Gallagher [Gal06] thoroughly surveyed the practical approaches for collecting matches of
graph patterns. This work, however, only focuses on the foundational algorithms for finding
subgraphs that satisfy all conditions prescribed by the patterns, and does not discuss dis-

tributed versions of the algorithms.

Distributed graph query evaluation over fragmented data was first presented by Ma et
al. [Ma+12] while further algorithms were subsequently reported by others as well [Mit+14;
Pet+14; KTG14]. The IncQuery-D framework [Sza+14] provides support for distributed incre-
mental model queries deployed over a cloud infrastructure. It builds an in-memory middleware
layer on top of a distributed model storage system, and uses the Rete algorithm [For82] for
incremental maintenance of query results. As a key limitation, these distributed graph query
evaluation techniques use a cloud-based execution environment, thus they are not directly

applicable for a heterogeneous execution IoT platform with low-memory computation units

38

4.3 Runtime Verification

where there is no network and device capacity to forward all data to a central location in a
cloud. Furthermore, cloud-based storage and processing of data can be problematic from a

privacy perspective in some cases and thus local processing is desired.

4.2.3 Distributed Graph Databases

There are existing databases that use graphs as the underlying data representation. One of
such databases is JanusGraph (formerly known as TITAN)!. It provides support for storing
and querying very large graphs by running over a cluster of computers. In addition to storing
data in a distributed way within a cluster, it also supports fault tolerance by replication and
multiple simultaneous query executions by transactions. Even though it claims to execute
complex graph traversals in real time, the framework provides no QoS assurance regarding

response time.

OrientDB? is a multimodel database that has a native graph database engine where graph
data may or may not be defined by a corresponding schema. However, in case of both Janus-
Graph and OrientDB, deployment of the database to memory-constrained devices is not sup-

ported by default, which is a fundamental need for distributed CPSs.

Furthermore, a distributed graph database specifically for the data management of IoT sys-
tems is presented by Ueta et al. [Uet+16]. They rely on the property graph data model [CDHO00],
where nodes of a graph can represent users, devices, data directories, data items, and ac-
tual data, while edges represent data access and data ownership. A prototype implementation
provides CRUD operations for the data. This implementation incorporates lightweight REST

servers running on each platform unit to allow remote execution of operations.

4.3 Runtime Verification

4.3.1 Runtime Verification Approaches

For continuously evolving and dynamic CPSs, an upfront design time formal analysis needs
to incorporate and check the robustness of component behavior in a wide range of contexts
and families of configurations, which is a very complex challenge. Thus consistent system

behavior is frequently ensured by runtime verification (RV) [LS09], which checks (potentially

!https://janusgraph.org/
Zhttps://orientdb.org/

39

4.3 Runtime Verification

incomplete) execution traces against formal specifications by synthesizing verified runtime
monitors from provenly correct design models [MP14; JTF17]. These approaches focus on the
temporal behaviour of the system: runtime verification of data-driven behaviour is not their

main goal.

Recent advances in RV (such as MOP [Mer+12] or LogFire [Hav15]) promote to capture
specifications by rich logic over quantified and parameterized events (e.g., quantified event
automata [Bar+12] and their extensions [DLT15]). Moreover, Havelund proposed to check
such specifications on-the-fly by exploiting rule-based systems based on the RETE algorithm
[Hav15]. However, these techniques consider relations between events and do not take models

as first class citizens of the runtime analysis.

Traditional RV approaches use variants of temporal logics to capture the requirements
[BLS11]. Recently, novel combinations of temporal logics with context-aware behaviour de-
scription [Gon+16; HMM13] (developed within the R3-COP and R5-COP FP7 projects) for
the runtime verification of autonomous CPS appeared and provide a rich language to de-
fine correctness properties of evolving systems. These approaches introduced the concept of
context models, which can also be represented in the graph based approach of this thesis. Re-
cently, monitoring approaches to analyse topological properties in a discrete space appeared
[Nen+15]. Qualitative and quantitative analysis is supported. However, complex data driven

behaviour is not the focus of the approach.

4.3.2 Runtime Monitoring in Resource-Constrained Environments.

The tool polyLarva [Col+12] provides means to adjust the possible overhead imposed by
the runtime checks performed during monitoring. The Brace framework [Zhe+16] supports
monitoring in distributed and resource-constrained environments by incorporating dedicated

units in the system to support global evaluation of monitoring goals.

4.3.3 Runtime Verification of Distributed Systems.

While there are several existing techniques for runtime verification of sequential programs,
Mostafa and Bonakdarpour [MB15] claim that much less research was done in the area for
distributed systems. Furthermore, they provide the first sound and complete algorithm for

runtime monitoring of distributed systems based on the 3-valued semantics of LTL.

40

4.4 Worst-Case Execution Time Analysis

Bauer and Falcone [BF16] focus on evaluating LTL formulae in a fully distributed manner
for components communicating on a synchronous bus in a real-time system. These results can
provide a natural extension of our work into the temporal directions. Additionally, a machine
learning-based solution for a scalable fault detection and diagnosis system is presented by

Alippi et al. [ANR17] that builds on correlation between observable system properties.

4.3.4 Resource Monitoring Frameworks

A cloud-centric vision for Internet of Things is presented by Gubbi et al. [Gub+13], which
is a dominant approach in healthcare IoT applications. Typically, data collection from the
environment is carried out at the edge of the network, then intelligent processing is performed
on a cloud platform [Has+15; Fan+14]. However, our focus differs from this in two ways,
namely (i) all the processing is done on the network edge due to assumed network and device
performance limitations and to ensure that sensitive data is not exposed and (ii) they rely on
low-level sensor data directly for monitoring and analytics rather than building an abstract

knowledge base.

The work presented in [Sha+10] uses runtime models to monitor cloud platforms. It defines
a metamodel to describe Saa$S cloud services, and model their allocation to physical hosts and
runtime performance characteristics. Instances of this model are created at run time based on
the incoming information obtained from the various services. Data collection is done by agents

monitoring the services, and data aggregation is in a centralized database for monitoring data.

4.4 Worst-Case Execution Time Analysis

Methods for efficiently analyzing timing properties and computing precise WCET bounds of
programs have been actively researched since real-time systems appeared. Detailed surveys
on such methods are available, for example, by Kozyrev [Koz16] and Wilhelm et al. [Wil+08].
Static WCET analysis techniques have two major categories [Wil+08].

« High-level analysis works with the abstract flow of a program, mainly using the con-
trol flow graph or the control flow automata obtained from the source or machine
code [LS03; Fer+08; Bla+10].

« Low-level analysis techniques focus on platform-specific details (e.g., memory, caches,

pipelines, and branch prediction) when assessing timing properties [BP05; SS07; Pua06].

41

4.4 Worst-Case Execution Time Analysis

Performing high-level
WCET analysis

Synchronous

Distributed system?

system?

Hierarchical Timing Language (HTL)
breaks down the problem to WCET
analysis of individual components

no

WCET estimation for
asynchronous reactive programs
is an open challenge

Data with
varying size?

Data-dependent
control flow?

WCET of programs with
dynamic memory allocation
is an open challenge

Parametric WCET estimation
(symbolic execution, IPET)

Fixed execution path,
low-level analysis is sufficient

Figure 4.1: Summary of high-level static analysis techniques for computing WCET

Various high-level, static WCET analysis techniques have been developed to provide safe
timing estimates for the execution of various types of programs. Figure 4.1 summarizes the
most popular methods used for WCET analysis. The implicit path enumeration technique
(IPET) [LM95] is commonly used for this purpose. This technique analyzes the program paths
(control flow) to determine what sequence of instructions will execute in the extreme case.

The path analysis in IPET is based on solving and integer linear programming problem.

Moreover, initial WCET analysis support has been provided for distributed systems by
Ghosal et al. [Gho+06] by breaking down the problem into WCET analysis of communicating
components using the Hierarchical Timing Language (HTL). HTL organizes tasks into a hier-
archical, tree-like structure that has the complete program as its root. All tasks are executed
periodically, and dedicated communicator processes coordinate the exchange of information

between the ones running on different hosts.

4.4.1 Program Flow Analysis

Timing analyzers for program flow analysis often employ some version of the implicit path
enumeration technique (IPET) [LM95]. The general idea behind this method is to use the con-
trol flow graph (CFG) of the program to create an integer linear program (ILP) where each
variable encodes the number of executions of a corresponding basic program blocks, and the

objective function is to maximize their total execution time. Besides the IPET method, several

42

4.4 Worst-Case Execution Time Analysis

tree-based methods exist which use a tree representation of the program (obtained from the
source code or compiled binary) and apply some traversal to find the longest path in a pro-
gram [Lim+95; CB02; BFL17]. In any case, the effectiveness of these methods rely on precise
program flow facts (e.g., loop bounds, infeasible paths) to be able to determine a safe and tight
WCET estimate. Although there are several advanced (semi-)automated techniques available
today to derive additional constraints on the program flow thus improving the precision of the
WCET estimate [Gus+06; Erm+07; CJ11; KKZ13; Lis14], there is still a significant manual effort
needed to specify flow facts [Abe+15]. Most closely related to our current work is [KKZ13],
which uses uses abstraction refinement to reduce WCET estimates by squeezing. This squeez-
ing technique operates by checking if the WCET estimate is produced by a feasible program
path. If the path is feasible, a WCET estimate is found, but if it is not, then a new constraint is
added to the WCET estimation problem and a new WCET is computed. This process can be
repeated until either a WCET path is found to be feasible or the WCET estimate falls below
a desired threshold. However, this approach cannot exclude longest execution paths from the

program which are infeasible due to complex domain-specific constraints on the inputs.

4.4.2 Parametric WCET Computation

An efficient algorithm for parametric WCET calculation is presented by Bygde et al. [BEL11].
Constant WCET estimates may not be useful, since WCET may heavily depend on many pa-
rameters and configurations that are only known at runtime. Thus, a classic WCET analysis
result yielding a safe upper bound is typically impractical. However, a parametric WCET de-
rives an upper bound as a formula, rather than a constant for a program, which can then be

instantiated at runtime with the corresponding variable values.

4.4.3 Real-Time Database Queries

In real-time databases [0S95], access to data has strict time constraints. The work in [HOT89]
presents a data sampling-based statistical method to evaluate aggregate queries in a database.
There is a trade-off between time available for query execution and the precision of the
estimate. Such estimations would not be acceptable in a monitoring setting where precise
query results are expected. The real-time object-oriented database RODAIN [TR96], which tar-
gets telecommunication applications, does not support hard real-time transaction (i.e., query)
types, because it is considered too costly for the target domain. However, our objective is

exactly to provide such guarantees over graph models to support hard real-time applications.

43

4.4 Worst-Case Execution Time Analysis

4.44 WCET of Graph-Based Computations

Graph models and queries have been often used in design models and tools of real-time sys-
tems [Jir03; Gie+03; Bur+04]. However, in the context of data-driven monitors, these tech-
niques are applied at runtime for monitoring deployed in the real-time system itself, for which
only a few related papers exist. One of the few related works that investigates real-time prop-
erties of graph-based techniques is by Burmester et al. [Bur+05]. Motivated by the expressive-
ness of story diagrams [Fis+98], the authors evaluate the applicability of this high-level model-
ing formalism to recognize hazardous situations in real-time systems. Their work investigates
worst-case execution times of imperative programs generated from such story diagrams by
executing measurements of manually created worst-case inputs. In contrast, our work aims

to automatically synthesize worst-case well-formed input models as part of static analysis.

4.4.5 Hard Real-Time Monitors in Embedded Systems

One of the earlier works in the field is The Temporal Rover [Dru00]. This framework can
generate monitoring code from temporal logic formulae with low overhead, but the verifica-
tion of properties is done in a large part on a powerful remote host, while our method does
not rely on any external component. The concept of predictable monitoring was introduced
in [ZDG09] where static scheduling techniques were used to show that a monitor fits its allo-
cated time frame, but the analysis of monitoring tasks is out of its scope which is the topic of
this thesis. Finally, synchronous component execution and observable program states are the
main assumptions made in [Pik+10] to support sampling-based monitoring of input streams
in real-time systems, whereas our work targets monitors executing complex queries over a

graph model capturing contextual information on a high-level of abstraction.

4.4.6 Dynamic Memory Allocation in Embedded Systems

A well-known challenge in programs with dynamic memory needs is the ability to precisely
predict the behavior of the memory allocator [Wil+10]. In general, allocators do not provide
guarantees about the memory addresses reserved at runtime. This makes low-level WCET
analysis problematic because there is no information about what cache sets will the newly
allocated memory belong to. This way every time a dynamically allocated memory is accessed,
the analyzer needs to assume that the all contents of the cache is invalidated. A further issue

with using dynamic memory allocation is that the allocator itself is using some internal data

44

4.5 Summary

structure for tracking in-use memory blocks. This way, whenever an allocation is initiated,

the access to these internal data structures pollutes the cache.

A solution in [Wil+10] to the nondeterminism of memory allocators is to use deterministic
ones instead [Mas+04; HRW08]. Such deterministic allocators are able to provide guarantees
regarding the placement of the allocated memory blocks and they serve allocations in O(1)
time, but the memory tends to be more fragmented compared to traditional allocators, which

may result in poor memory utilization.

Another approach to circumvent the limitations of dynamic allocation is to a priori com-
pute the memory usage of the application [HR09]. The idea is to allocate memory in advance
that the program will need at runtime. This method optimizes the reserved memory size by
reusing some data structures multiple times for different purposes at runtime. In this case,
however, detailed information is required about the memory needs of the program, which is

not always available.

4.5 Summary

This chapter introduced the related work for this thesis and covered four major fields: runtime
models, distributed graphs, runtime verification, and worst-case execution time calculation.
We now summarize the limitations in the state-of-the-art and outline the unique features of

the approaches presented in this thesis.

Runtime models. While the use of graphs as the underlying knowledge representation is
not new, the adaptation of runtime graph models to real-time, resource constrained environ-
ments has been neglected. One of the main objectives of this thesis is to provide such models

usable with the platform of modern CPSs.

Dynamic graphs. Most systems keep graphs in large databases and partition data so that it
can be efficiently stored, queried, or updated. However, the objective of this thesis is addressing
a different problem which has not been investigated: how to capture graph data close to the

source of the data, while providing various guarantees (fault tolerance or consistency).

Runtime verification. Novel rule-based runtime monitoring solutions have started getting
more attention in the last 5 years. This thesis presents one of such innovative approaches, and
we show how to use graph queries for formulating the monitoring objectives. Monitoring pro-

grams synthesized from these high-level declarative descriptions focus on complex relation-

45

4.5 Summary

ships in the data available about the underlying system at a given time, rather than detecting

sequences of events.

Worst-Case Execution Time Analysis. Modern smart and safe CPS applications are pred-
icated on different ideas than traditional safety critical systems, and they often use intelligent
data processing algorithms while carrying out critical tasks. Although there is a significant
body of work available in the literature about how to statically analyze programs to derive
timing properties, the results presented in this thesis focus on automatically incorporating
domain-specific knowledge about the program inputs into the analysis process to provide

tighter estimates, which is unprecedented in the field of WCET analysis.

46

Part 11

Runtime Graph Models and

Queries in Real-Time Systems

47

Adaptation of Runtime Graph Models
to Embedded Systems

In the last decade, with the growing interest towards self-adaptive systems, new approaches
were developed which enable the management and maintenance of graph models at run-
time [GHTO09; Mor+14; Har+19]. Capturing the contextual information of a cyber-physical
system in an evolving graph model opens the way for the adaptation of existing graph-based
techniques to runtime. However, there has been very limited discussion about runtime model

representations suitable for real-time embedded environments.

This chapter lists high-level requirements of using such runtime graph models in hard real-
time systems as the underlying knowledge base for runtime monitors. Concrete suggestions
for the capabilities and features of a runtime graph model manipulation API for embedded
systems are provided in Section 5.1. Furthermore, we evaluate our prototype implementation
of the proposed model API by comparing the execution characteristics of the same initial

implementation across different hardware platforms in Section 5.2.

5.1 Graph Data Structures for Embedded Systems

A snapshots of the underlying runtime model of the system can be represented by an instance
model, as discussed earlier in Section 3.1.1, and the structure of this model directly impacts
the performance of query evaluation. Since an embedded device may have limited available
CPU and memory resources, a lightweight data structure is desirable to efficiently capture

runtime graph models. While the in-depth discussion and trade-off analysis of possible graph

48

5.1 Graph Data Structures for Embedded Systems

typedef struct { typedef union {

1
uint16_t segment_id; 2 Segment segment;
Train *train; 3 Train train;
Segment *connected_to[2]; 4|} Object;
uint8_t connected_to_count; 5| struct Modes3ModelRoot {
} Segment; 6| Object objects[MAX_OBJECT_COUNT];
7 uintl6_t object_count;
typedef struct { 8| uint16_t segments[MAX_OBJECT_COUNT];
uint16_t train_id; 9 uint16_t segment_count;
double speed; 10| uint16_t trains[MAX_OBJECT_COUNT];
Segment *location; 11 uint16_t train_count;
} Train; 12| } runtime_model;

Listing 5.1.1: Classes of the MoDeS3 domain Listing 5.1.2: Generic graph object and model root

Listing 5.1: Example implementation of a generic graph data structure with Segment and Turnout
domain classes

data structures is beyond the scope of this work, we present one set of requirements and

assumptions about the supported operations of the underlying model.

A possible implementation of the metamodel classes of the MoDeS3 overarching running

example is introduced below.

Example 8. Listing 5.1.1 shows a possible C implementation of data structures for Seg-
ment and Train classes present in the metamodel previously introduced in Figure 3.2a.
Lines 2, 9, and 10 are fields created from respective attributes. Furthermore, in this exam-
ple, we implement references (i.e., links in the graph model) as pointers (line 3 and 11)

or pointer arrays with sizes (lines 4 and 5).

5.1.1 Dynamic Element Allocation

The runtime model serves as the knowledge base about the underlying system and its envi-
ronment. For this reason, it needs to accommodate graph models without a theoretical a priori
upper bound for model size. A solution to this is to dynamically reserve and free memory at
runtime. However, a major drawback of such an approach is the nondeterminism that lies in
the typical implementation of such allocator functions (e.g., malloc and free in C libraries),
as they often do not guarantee neither return value (i.e., memory allocation can be unsuc-
cessful) nor execution time (i.e., allocation time depends on factors hidden from the user of
the function). By employing such functions, the embedded software inherently becomes more

complex and hinders the assurance of reliable operation, and makes it especially difficult to

49

5.1 Graph Data Structures for Embedded Systems

estimate the WCET. Deterministic allocators [HRW08] can mitigate this issue, but there is a

very limited number of platforms which have such deterministic implementations available.

Based on [HR09], we suggest an alternative to avoid dynamic memory allocation in real-
time systems by allocating the maximum amount of memory that is physically possible as
runtime graph model storage. A major advantage of this is that only the allocated memory is
determined at compile time, the type (and distribution) of graph objects stored is runtime in-
formation. However, as a trade-off, the approach can be moderately wasteful with the memory

space (as discussed later in Section 5.2) in order to make the program execution deterministic.

Example 9. Listing 5.1.2 shows how the graph model container Modes3ModelRoot from
Figure 3.2a (lines 5-12) can allocate static memory for generic graph objects represented
by the union type Object (lines 1-4) in C. The maximum used memory by the graph
is preallocated in line 6 by the objects array whose length equals to the maximum
number of Object that fits into the memory of the device (denoted by the constant
MAX_0BJECT_COUNT). However, the information about what type of graph object (Train
or Segment) is stored at a location in the objects array is only determined at runtime,

which gives flexibility to the proposed model storage.

5.1.2 Object Indexing

As query evaluation typically starts by iterating over all elements of a given type or accessing
specific objects (see Section 3.2), it necessitates efficient object access, e.g., by maintaining a

real-time index for memory resident data [CK96].

In this work, we propose a simple indexing mechanism that relies on a mandatory, unique
(integer) id attribute to be present for each type, which also encodes the type of the object.
We use these unique identifiers as means to access objects in the graph individually. For each
type C;, we create a lookup table that uses the identifier as the key, and the return value is the

pointer (or offset) to the object in the memory.

Example 10. In Listing 5.1.2, the arrays segments (line 9) and trains (line 11) imple-
ment the lookup tables for the respective types and they keep track of the indexes (i.e.,
pointer offsets) of the objects within the objects array. The id attributes of a given

Segment or Train model object is used to index these arrays. We also assume an ID

50

5.1 Graph Data Structures for Embedded Systems

space where the most significant bits encode the type of the object, allowing the implicit

selection of the lookup array (segments or trains) to be indexed.

5.1.3 Continuous Maintenance of Model Statistics

As objects in the graph model are created and deleted, high-level model statistics [Var+15]
such as the number of instances of each type C; (i.e., statsy;(C;)) in the model should be main-
tained continuously to allow real-time access to them. As discussed later in Section 7.1, the
graph query execution is heavily data-dependent, and the runtime graph model statistics pro-
vide a succinct view of the model which is useful in estimating the execution times of query

programs.

Example 11. Runtime model statistics are captured in Modes3ModelRoot by the coun-
ters in lines 7, 9, and 11. These are simple variables which are incremented/decremented

as part of object creation/deletion.

5.1.4 Navigability Along Edges

Many steps in query evaluation navigate along the edges (references) of selected objects to
find further appropriate variable substitutions for unbound query variables. A simple way to
support this feature is by, e.g., maintaining direct pointers in the objects to reachable objects.
Representing links between objects with pointers is highly efficient from a performance view-
point. However, in this case dangling edges may occur, which need to be accounted for when

navigating along the references (e.g., by checking the existence of the target object).

Example 12. The example classes in Listing 5.1.1 encode references in line 11 (reference

to a single object) and in lines 4-5 (reference to a set of objects).

5.1.5 Reduced Memory Footprint

For every CPU and instruction set architecture (ISA), there are alignment rules regarding the
placement of data to memory addresses for efficient handling. In practice, this often requires
the insertion of padding bytes between members of complex data structures to ensure that
the data conforms to the alignment rules of the execution platform. However, in embedded

systems with about tens of kilobytes of available memory, it can provide valuable gains in

51

5.1 Graph Data Structures for Embedded Systems

storage capacity if the data in the memory could be organized without such paddings inserted.
This tight arrangement of data without any padding bytes is referred to as packed layout and
it is often employed in serialized network packets [ELK08].

On the x86 architecture, which is common in desktop computers, accessing unaligned
data can cause slower data fetching, but it is an operation that is generally supported by the
hardware of the CPU. However, in typical resource-constrained environments x86 is not the
dominant architecture, several applications use platforms where access to unaligned data is
not supported. Such unaligned accesses often lead to a hard fault at runtime, and they can
only recover by resetting the system. However, on execution platforms where arbitrary data
access is possible and only limited memory is available the trade-off between the size of the

saved memory space and the imposed run time overhead needs to be evaluated.

The memory layout can be changed by using compiler switches and nonstandard language
constructs in case of the C programming language. For example, such a construct for the GCC
compiler is __attribute__((packed)) which tells the compiler to ignore the default data
alignment rules for the type and place data members of a structure to the memory with no

padding between them.

Structure members:
uintl6_t segment_id;
Train *train;

Segment *connected_to[2];
%{t connected_to_count; 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Byte number

Word-aligned layout (20 bytes): Packed layout (15 bytes):
Offset Offset
o 1 2 3 0o 1 2 3
n+00 n+00
w n+04 v n+04
3]
< n+08 < n+08
e} e
< n+12 < n+12
n+16

Figure 5.1: Memory layout options for the C structure Segment

52

5.2 Evaluation

Example 13. Figure 5.1 illustrates the memory alignment differences using the C struc-
ture Segment defined in Listing 5.1.1. The top part and lower left side of the figure demon-
strates how the compiler aligns the data by default on a CPU with a word size of four
bytes. The Segment structure would occupy a total of 20 bytes including padding, while
the useful data is only 15 bytes. Furthermore, such a data structure can only be allocated

to memory addresses of the form n = 20 - k, k € N to ensure consistent alignment.

On the other hand, when __attribute__((packed)) is added to the definition of
the structure, the data alignment will be the one shown in the lower right part of Fig-
ure 5.1. In this case, the data structure can be allocated to any memory address as well,

i.e., n € N addresses are all allowed.

5.2 Evaluation

We created a prototype software that implements the model operations described in Sec-
tion 3.1.2. We deployed this prototype to different microcontroller units (MCUs) with limited
computing and memory capacity to compare the different memory allocation strategies. In

particular, we aim to find answers to the following questions:

RQ1 What is the average execution time of the different model update operations when using
static vs. dynamic memory allocation?
RQ2 What is the memory usage of static and dynamic allocation strategies?

RQ3 What is the runtime effect of using packed memory alignment?

5.2.1 Evaluation Overview and Setup

The runtime graph model

To address our research questions, we manually designed an instance model inspired by the
MoDeS3 CPS demonstrator [c6] introduced in Chapter 2. We implemented a program pro-
totype which first creates and then deletes this realistic runtime model repeatedly, and we

measure the average execution times of the update (create and write/delete) operations.

The model captures a detailed runtime model snapshot of MoDeS3 that is similar to the one

presented in Figure 3.2b and counts a total of 156 objects. The model statistics are as follows:

o statsy(Segment) = 96,

53

5.2 Evaluation

o statsy;(Turnout) = 30, and

o statsy(Train) = 30.
Hardware setup

In this evaluation, the programs writing the runtime graph model execute on MUCs which
have no other tasks (e.g., interrupts) running. Because these programs take tens of microsec-
onds to execute, we apply the following measurement setup to obtain an estimate of the av-

erage object update execution times:

1. First we create an infinite loop and observed the loop execute n times under a fixed time
duration Tpeqs (in our case Tpeqs = 15).

2. Then, we add a selected set of model update operations targeting a single type C; (e.g.,
all deletions of Train objects) to the loop and counted m loop executions under Ty;eqs.

3. Finally, we use the following formula to get the average run times of query evaluations
on given input models (total run time divided by the number of objects of type C;):

(l - %) - 10%s

m

statsy(C;)

Tobj upa =

Repeating the above measurement process 30 times for each set of operations show negli-
gible difference in the average object update operation times (maximum difference from the
measured average is 0.05us), which is unsurprising since it is the only task running in the

system.

The programs used are compiled with the GCC compiler for ARM version 7.2.1 20170904

(release) and they are deployed to three different microcontroller evaluation boards:

« Adafruit Feather Express Board! has a low-power Microchip microcontroller ATSAMD-
21G18A with ARM Cortex-M0+ core without any instruction or data cache. The CPU
clock runs at 48MHz.

« Infineon Relax Lite Kit-V1 Board?. This board has an XMC4500 F100-K1024 microcon-
troller and it is driven by a 120MHz system clock. This microcontroller is considered
to be a mature industrial MCU and has an ARM Cortex-M4 core with 4KB instruction

cache and no data cache.

"https://www.adafruit.com/product/3403
2https://www.infineon.com/xmc-dev

54

https://www.adafruit.com/product/3403
https://www.infineon.com/xmc-dev

5.2 Evaluation

« STM32 Nucleo-144 Development Board® features the STM32F767ZI high-performance
microcontroller with ARM Cortex-M7 core. It has both instruction and data cache, and
the system clock is 216MHz by default.

5.2.2 Measurement Results

The evaluation results are presented in Table 5.1. The average time of an operation projected to
an object is presented in each row (measured in microseconds). The Operation column shows
the operation type (creation or deletion), the Allocation column shows if the operation relies
on upfront (static) or runtime (dynamic) memory allocation. The Actions column briefly sum-
marizes what steps are taken during the operation. These possible actions are a combination
of (i) allocating memory, (ii) writing the model object, (iii) adding the object to the index struc-
ture of the model, (iv) remove the object from the index, (v) scrubbing (i.e., filling with zeroes)

the memory location where an object was previously stored, and (vi) freeing memory.

The last six columns in Table 5.1 present the measurement results on three different MCUs
with the two different memory placement strategy (Aligned or Packed) on each. The used ARM
MCUs, however, do not support unaligned memory accesses on hardware-level, i.e., such ac-
cesses lead to hard faults at runtime. Instead, the compiler generates machine code with re-
spective individual byte accesses and bit shifting operators which are functionally equivalent
to aligned data access, but inherently come with overhead in run time. With these devices,
performing unaligned memory accesses require some extra caution from the programmer to
refrain from certain language constructs, e.g., not to dereference pointers set to unaligned
members of a C struct where compilers are unable to recognize unaligned data accesses and

would generate code which leads to hard faults during execution.

Findings for RQ1. For object creation operations on all platforms, we observe approxi-
mately two times slower execution times with dynamic memory allocation when compared
to the static one. This is in line with our expectations because the memory allocator func-
tion takes additional steps to record the assigned memory addresses which poses a significant

overhead.

On the other hand, object deletion operations show bigger differences between platforms
from the perspective of static and dynamic memory allocation. The time needed to call free on

a dynamically allocated object vs. fill out the statically allocated memory location with zeroes

Shttps://www.st.com/en/evaluation-tools/nucleo-f767zi.html

55

https://www.st.com/en/evaluation-tools/nucleo-f767zi.html

5.2 Evaluation

Table 5.1: Runtime model object manipulation times on real-time units

Microcontroller
ATSAMD21G18A XMC4500 STM32F767Z1

Operation Allocation Actions Object Type Aligned Packed Aligned Packed Aligned Packed
Add to Ind Segment 8.04 us +204% 0.64 us +27% 0.26 ps +38%
Static d\;(/) il ex Turnout 9.71 ps +304% 0.86 s +23% 0.30 ps +49%

and Write .
Creation Train 7.46 us +197% 0.62 ps +30% 0.26 ps +56%
All M Segment 19.22 us +85% 1.18 us +12% 0.45 ps +17%
Dynamic ;:;t? emory Turnout 25.06 us +117% 1.41 ps +14% 0.57 ps +19%
and Write Train 17.05us +86% 1.07pus +16% 0.40pus +35%
Segment 2.65pus +0% 0.21 ps +0% 0.11 ps +2%
Remove from Index Turnout 2.69pus +0% 0.21 ps +0% 0.11 ps +5%
Static Train 2.70 ps +0% 0.21 ps +0% 0.11 ps +1%
Segment 1131 pus +122% 0.85 ps +53% 0.41 ps +64%

i fi I

Deletion szing:reubr&n;mﬁex Turnout 1490 s +138% 1.12ps +58% 056 pus +67%
Y Train 8.41pus +148% 0.63 us +59% 0.33 ps +62%
Segment 11.83 ps +0% 3.93 us +0% 0.21 us -2%
Dynamic Free Memory Turnout 1196 s +0% 8.14 us +0% 0.22 ps +2%
Train 11.72 ps +0% 9.16 s +0% 0.21 ps +3%

(i.e., scrub) and remove the index entry for the object show three different relationships on
the three platforms. Dynamic memory allocation takes 50% less time on the more advanced
STM32F767Z1, takes about the same time for ATSAMD21G18A, and takes 4-14x more time
on XMC4500. This observation sheds light on the differences between the standard library

implementations available for the three different MCUs.

Runtime models can be stored in a platform-independent way with rapid, lightweight,

deterministic graph model storage.

Findings for RQ2. To compare the memory utilization of the two approaches, we focus
purely on the memory consumed by the model objects themselves. In this comparison, we do
not consider the additional space taken by the malloc/free standard library functions and
the space required by the index structures which facilitate the lookup of model elements by

their identifiers.

The model used for this evaluation has a total of 156 objects: 96 segments, 30 turnouts,
and 30 trains. The runtime sizes of the structures (with only aligned accesses) are 20 bytes, 28
bytes, and 24 bytes, respectively. Furthermore, the Object union data structure formed from

the three C structures occupies 32 bytes.

56

5.2 Evaluation

The total model size in the dynamic case equals to the sum of the sizes of the individual
structures: 96-20 bytes+30-28 bytes+30-28 bytes = 3480 bytes. In case of static allocation, each
graph object occupies 32 bytes, which yields 156 - 32 bytes = 4992 bytes. In this assessment,
the dynamic memory allocation approach uses 30% less memory than our static allocation

scheme.

Our comparison shows that the proposed static model allocation method requires 30%
more memory compared to dynamic allocation to store the same graph, which is an ac-

ceptable price to pay in exchange for deterministic (and 50% faster) execution times.

Findings for RQ3. The biggest drawback of using unaligned memory accesses is the limited
support from the hardware side and the added restrictions of allowed language constructs.
Fortunately, in case of this evaluation, the compiler is able to recognize such cases and replace
them by multiple instructions with equivalent behavior, thus our monitoring programs are

able to successfully complete their executions.

Another negative consequence of packed memory layout is the significant increase in ex-
ecution time needed for writing data to unaligned memory addresses, which we observed in
three cases for all platforms: (i) writing a structure to statically allocated arrays, (ii) writing a
structure to dynamically allocated memory space, and (iii) scrubbing the contents of a struc-
ture. However, the time increase is not the same for the used platforms. For example, in case
of the ATSAMD21G18A MCU, operations writing objects to the statically allocated arrays re-
sults in an increase of 197%-304%, depending on the size of the structure being written. For
the other two platforms, this increase for the same operations is at most 56%. The reason
for this relatively moderate increase compared to that of ATSAMD21G18A is likely due to
the instruction caching mechanism available for XMC4500 and STM32F767ZI, but not for the
ATSAMD21G18A.

Furthermore, the time needed for dynamic memory handling in the aligned and packed
cases show negligible differences. This is not a very surprising result because the allocators
ultimately rely on the sizes of data types and structures expressed in bytes, and they do not

deal with the data that is to be written to the memory space.

On a positive note, the size of the data structure decreases considerably when data align-

ment is not enforced. The benefits are presented below.

« Segment: size drops to 17 bytes from 20 bytes, 15% reduction.

57

5.3 Summary

« Turnout: size drops to 25 bytes from 28 bytes, 11% reduction.
« Train: size drops to 16 bytes from 24 bytes, 33% reduction.
« Object: size drops to 25 bytes from 32 bytes, 22% reduction.

Thus, the model used in the evaluation decreases in size as well: dynamically allocated model

occupies 2862 bytes (18% less), while the static model size drops to 3900 bytes (22% less).

The packed memory layout is able to achieve up to 33% side reduction of structs in our
experiments, however, it comes at the cost of execution time penalty up to 300% compared

to the aligned case, and possible runtime faults by unaligned accesses.

5.2.3 Threats to Validity

Construct validity. In our experiments, we used a self-contained metamodel fragment
from the MoDeS3 demonstrator that was selected and validated manually. Furthermore, we

assessed all possible model update operations supported by our proposed framework.

Internal validity. To mitigate the impact of nondeterminism present in the C library func-
tions for each platform, we measured average execution times of model operations. This al-
lowed to reduce the fluctuations of run times caused by factors which are external to our

implementation.

External validity. This evaluation was done using one metamodel from the MoDeS3 do-
main. Performing the same comparisons for multiple diverse domains would improve the gen-
eralizability of the results and findings. The ARM-based microcontrollers used for running our
runtime model benchmarks are well-known and supported by the GCC compiler. In case of
new or lesser-known hardware, one may face significant limitations on the software level
(w.r.t available libraries and developer tools). Thus, performing the evaluation scenario may
require a significantly different evaluation setup, where results may not be comparable with

the ones presented here.

5.3 Summary

This chapter showed the challenges of adapting runtime graph models to real-time embedded
systems, where ensuring predictable timing behavior and respecting resource limits are im-

portant. We provided a solution to improve timing predictability of programs which read and

58

5.3 Summary

write such runtime models. We implemented a prototype in C, and evaluated the timing prop-
erties of the presented solution using three different microcontroller platforms. The obtained
results suggest that the proposed method for managing the lightweight data structure of the
runtime model is sufficiently fast to update ~100 objects per millisecond even on the simplest
MCU, thus it is suitable for capturing dynamically changing runtime information of CPSs. Fur-
thermore, by comparing results from aligned and packed memory layouts, a trade-off between
saving memory space and sacrificing execution time is dissected. Despite its potential bene-
fits, we concluded that using packed memory layout is not recommended because it can be a
cause for hard faults at runtime on platforms where unaligned accesses are not supported in
the hardware, and it potentially restricts the allowed set of programming language constructs.
In particular, this chapter introduced the results related to the first contribution group (Co1.1,

Co1.3 and Co1.4) for real-time embedded systems.

Publications related to this chapter. A conceptually similar C data structure design is
introduced in article accepted at to the journal ACM Transactions on Embedded Computing
Systems [j1], and it is my contribution. The rest of the results presented in this chapter are
yet to be published. The contributions of the coauthors of the related journal article [j1] are

detailed in Section 7.8 where the majority of the results from the paper are presented.

59

Query-Based Runtime Monitors for

Real-Time Systems

Runtime monitoring is a technique where the system’s state during operation is observed in
order to decide if certain properties hold or violated. It is often employed as a complementary
approach for design time testing, and in this thesis we use it as an added layer of safety for

smart and safe CPSs.

This chapter shows how to synthesize monitoring programs from high-level query spec-
ifications that are deployable to real-time embedded systems. In Section 6.1, we introduce
data-driven safety monitors derived from high-level specifications that analyze aggregated
changes triggered by complex sequences of atomic events by evaluating queries over a con-
tinuously evolving runtime model. Then, we show how to derive monitoring programs auto-
matically from the query specifications in Section 6.2. Finally, we evaluate the performance of

the generated monitoring programs in Section 6.3 to show the scalability of the approach.

6.1 Data-Driven Runtime Monitors by Graph Queries

Queries capture safety properties at a high level of abstraction by focusing on structural de-
pendencies between system entities. Informally, we use graph queries to capture potentially
unsafe situations that may occur at runtime. In this work, we use first-order logic (FOL)
predicates to capture definitions of graph queries over instance models (see formal defini-
tion of graph queries in Definition 7). Similarly, the OCL standard has been used by Igbal et
al. [Igb+15] for related purposes.

60

6.1 Data-Driven Runtime Monitors by Graph Queries

Graph queries of runtime monitors are evaluated over a snapshot of the runtime model which
reflects the current state of the monitored system, e.g., data received from different sensors, the
services allocated to computing units, or the health information of computing infrastructure.
In accordance with the models@runtime paradigm [BBF09; SZ13], observable changes of the
real system gets updated — either periodically with a certain frequency, or in an event-driven

way upon certain triggers.

Classical event-based runtime monitors rely on some temporal logic formalism to detect
sequences of events occurring in the system at different points in time, while the underlying
data model used in such monitors is restricted to atomic propositions. On the other hand, data-
driven runtime monitors defined by graph queries can check structural properties of a runtime
model that represents a snapshot of the underlying system. In other words, they focus on the
data available on the underlying system at a given point of time (rather than detecting the

sequence of events that evolved the system into the particular state).

As such, event-based and data-driven monitors are complementary techniques. While
graph queries can be extended to express temporal behavior [DRV18], the current work is
restricted to (structural) safety properties where the violation of a property is expressible by

graph queries.

To capture the safety properties to be monitored, we rely on the VIATRA Query Language
(VQL) [Ber+11]. VIATRA has been intensively used in various design tools of CPSs to provide
scalable queries over large system models. This thesis aims to reuse this declarative graph
query language for runtime verification purposes, which is a novel idea. The main benefit is
that safety properties can be captured at a high level of abstraction over the runtime model,
which eases the definition and comprehension of safety monitors for engineers, especially,
when compared to monitors written in an imperative language. Moreover, this specification
is free from any platform-specific or deployment details, and deployable monitoring programs

can be automatically generated from such predicates (as we show this later in Section 6.2).

Technically, a graph query captures the erroneous case, when evaluating the query over a
runtime model. Thus any match (result) of a query highlights a violation of the safety property
at runtime. This language enables to specify a hierarchy of runtime monitors as a query may

explicitly use results of other queries (along pattern calls).

Example 14. On a railway track, a misaligned turnout (MT) refers to a state where a

turnout is set to a direction that differs from the direction of an incoming train. Trains

61

6.2 From Declarative Queries to Executable Programs

omr(mt, t) = Jloc : OccupiedBy (loc, t) A Turnout (mt) A Straight (mt, loc) A ~connected (loc, mt)
(a) Graph query as logic predicate

misalignedTurnout(mt, t) |

pattern misalignedTurnout(mt, t) {

- 1
£: Train 2| Segment.occupiedBy(loc, t);
3| Turnout (mt) ;
4 Turnout.straight (mt, loc);
occupiedByT straight 5| mneg find connected(loc, mt);

loc : Segment 8| Segment.connectedTo(sl, s2);

mr 6l }
..... NEG cormociedTa % 7| private pattern connected(sl, s2) {

mt : Turnout 9|}

(b) Graphical query presentation (c) Description of a query and its subquery in VQL

Figure 6.1: Monitoring goal formulated as a graph query gyt for misalignedTurnout

passing through such misaligned turnouts can damage the railway equipment and can
lead to derailment [MD15]. Query ¢yt shown in Figure 6.1a captures a (simplified) haz-
ardous case and identifies violating situations. The query returns pairs of trains ¢ and
turnouts mt¢ where the train is located on a segment loc that is the straight continuation
of the turnout, but the turnout is currently not connected to this segment. Any match
of this query highlights a train and a turnout where immediate action (stop the train
or switch the direction of the turnout) is required. Figure 6.1b shows the same graph
query in graphical presentation (used in modeling tools). Figure 6.1c shows the textual
description of ¢y using VIATRA Query Language (VQL) [Ber+11], which is a graph

query language often used in CPS design tools.

6.2 From Declarative Queries to Executable Programs

Constructing effective plans for graph queries that can effectively evaluate a query over in-
stance models is a complex challenge. It is outside of the scope of the current thesis and has
been formerly extensively studied (see, e.g., [HVV07; Var+15] for possible solutions). Instead,
we focus on the adaptation of graph queries to real-time resource-constrained environments,
and we present a pseudo code that generates program code suitable for deployment to a CPS
component from a search plan in Algorithm 6.2.1. The CompileSearchPlan function is param-
eterized with a search plan and a given search step index. Line 2 returns a code snippet to
register a match if the provided index is beyond the index of the final search step. Otherwise,

the search step is extracted (line 3) and the variable matcherCode to hold the generated code is

62

6.2 From Declarative Queries to Executable Programs

Algorithm 6.2.1: Code generation from search plans

1 Function CompileSearchPlan(sp, idx) is
2 if idx > sp.size() then return code for storing a match; Table 6.1: A possible search plan
3 step = sp[idx] L
. matcherCode = ™ for query misalignedTurnout where
5 if step is extend then free variables are underlined
6 for uv € step.getFreeVariables() do
7 matcherCode +=
8 AddLoopFor(uv, step.getConstraintFor(uv)) Constraint Step# Op. type
9 end Turnout (mt) 1 extend
10 else if step is check then Straight (mt, loc) 2 extend
u matcherCode += —ConnectedTo (loc, mt) 3 check
12 AddIfFor(step.getAllVariables(), step.getConstraint()) OccupiedBy (loc, 1) 4 extend
13 end
14 return matcherCode + CompileSearchPlan(sp, idx + 1)
15 end

initialized to an empty string (line 4). Then, if the current search step is an extend, it iterates
over all free variables (line 6) and generates a series of embedded for loops to bind these to the
respective candidate model objects selected by the constraint in the step (lines 7-8). Otherwise,
the current step is a check (line 10) and an if condition (lines 11-12) is inserted. Finally, in line
14, the generation continues recursively appending the code generated from the subsequent
steps to the result. The query code for the entire search plan sp can be generated by calling
CompileSearchPlan(sp, 1).

Example 15. Table 6.1 shows a possible search plan for the ¢yt query. Each row rep-
resents a search operation. The first column (Constraint) shows which constraint is en-
forced by the given step, the second column is the assigned operation number (or step).
The third column shows the search operation type (check or extend) which is based on
the variable bindings prior to the execution of the search operation: if the constraint pa-
rameters are all bound (i.e., none of the variables are underlined in Table 6.1), then it is a

check, otherwise, it is an extend.

Data-driven monitors aim to find matches of graph queries over the entire runtime graph
model using a local search-based query evaluation strategy. When such graph queries are used
in a real-time system, they need to retrieve all matches of a query in the model by a deadline.
This is carried out by using a depth-first search graph traversal algorithm derived from the
search plan of the query. This keeps the memory footprint of the algorithm constant, thus

only the graph data may change over time as the model evolves.

63

6.2 From Declarative Queries to Executable Programs

void mt_matcher (MTMatchSet *results) {
MTVars vars = { mt = NULL, loc = NULL, t = NULL }; LI1-L3
int match_cntr = 0;

// Constraint: Turnout (mt)

for(int i0 = 0; i0 < model->turnout_cnt; iO0++) {

vars.mt = model->nodes[model->turnout_ids[i0]];

// Constraint: Straight (mt, loc)

vars.loc = mt->straight;

if (vars.loc != NULL) {

10 // Constraint: ~Connected (mt, loc)

11 int is_connected = 0;

12 is_connected |= vars.loc->connected_to[0] == vars.mt;
= vars.mt;

B N =

&

L11-L14

13 is_connected |= vars.loc->connected_tol[1]
14 if (is_connected == 0) {

15 // Constraint: OccupiedBy (loc, t)

16 vars.t = mt.loc->train;

17 if(vars.t !'= NULL){ 119-120
18 // Register match Loopl
19 results->matches[match_cntr].mt = vars.mt; | TTTTTT S TTTTTTTTTTTTTTTTTC
20 results->matches[match_cntr++].t = vars.t;

L16-L17

22 |}

23 |}

24 |}

25 results->size = match_cntr;

26|}

Figure 6.2: CFG of the function

Listing 6.2.1: Source code generated for query misalignedTurnout
mt_matcher

The operations of the query search plan are translated to structured imperative code:

« Each extend operation is either a single assignment to a variable or a for loop iterating
over a set of candidate variable bindings, depending on the multiplicity of the respective
navigation edge (reference constraint).

+ Each check operation is mapped to an if statement that checks whether the current

variable binding satisfies a given condition created from the query constraint.

As a result, the source code contains a deep hierarchy of for-loops and if-statements em-
bedded into each other along the ordering of predicates prescribed by the search plan. Such a
template-based code generator for Java is presented by Varr¢ et al. [VAS12].

We also need to estimate the number of matches of a query to allocate appropriate space
in memory in advance to guarantee a predictable behavior. In the case of runtime monitors of
safety properties, we can assume that only a few violating matches will be detected [Sem+20],
thus the query result set is expected to be small and memory required for storing matches can

be reserved at compile time.

64

6.3 Evaluation

Example 16. Listing 6.2.1 shows the C code generated from the query specification of
misalignedTurnout. Assuming that a global variable model points to the root of the entire
graph model including its up-to-date model statistics, calling the function mt_matcher
with a pointer to the result set structure results will compute and store all matches

over the model in results.

In the example, the initially bound variables are assumed to be empty, as indicated in
Line 2 (L2 for short) with NULL values, because we aim to find all matches in the entire
model. In L3, the size of the result set is initialized to 0. The for loop in L5 represents
step 1 from the search plan (see Table 6.1) and iterates over all turnouts in the model,
binding the variable vars.mt to all possible objects in L6. Lines 8 and 9 together represent
search step 2. In L8, the vars.loc is assigned the segment referred by vars.mt via the
link straight. If such a segment exists in L9, execution continues with the third search

operation that is mapped to L11-L14.

The generated code for =~ConnectedTo (line 3 in Table 6.1) checks (as negative condi-
tion) if the vars.loc->connected_to array holds a pointer to the turnout vars.mt. The
execution only continues if no such reference exists, i.e., "ConnectedTo = 1 (see L14).
The final step of the search plan is mapped to L16 and L17. Here the train occupying the
segment stored in vars.loc is assigned to vars. t. If such a train exists, a match is found
and registered by assigning the corresponding variable values to parameter variables in
a new match (L19 and L20) and increasing the counter of found matches match_cntr.

The execution concludes with saving the number of matches (L25).

6.3 Evaluation

We performed experiments to address the following research questions:

RQ1 How does the query evaluation scale with increasing model size?
RQ2 What is the difference in run times when measured on different embedded computers?

RQ3 What is the overhead of subquery calls in query programs?

65

6.3 Evaluation

6.3.1 Measurement Setup

Computation platform

We use devices present or very similar to the ones in the physical platform of MoDeS3 railway
CPS demonstrator to answer our research questions (instead of setting up a virtual environ-
ment). One of these devices is a BeagleBone Black (BBB) device, which is frequently used in
Edge computing applications. This device features an AM335x 1GHz ARM Cortex-A8 proces-
sor with 512MB available DDR3 RAM and runs an embedded Debian Jessie with PREEMPT-RT
patch. In addition, we used three different microcontroller devices having limited computing
capacities and available memory. These microcontrollers run bare-metal (aka super loop) mon-
itoring programs, without any operating system, and they are representative to the hardware

platforms used in CPSs.

In the present setup, an instance model (i.e., runtime model snapshot) is preloaded in the
(limited) memory of the device, and monitoring queries are evaluated over the model. We now

only focus on query evaluation, model update was assessed in Section 5.2.

CPS monitoring benchmark

Graph models. The original snapshot of the runtime model of the CPS demonstrator only
has a total of 24 objects. For the scalability evaluation, we replicate the original elements to
reach sizes sizes of 49 — 43K objects and 114 — 109K links and pre-load the model into the

memory of a BBB. These scaled-up models share structural properties with the original one.

To assess the query evaluation times on various devices common in CPSs, we use the same
initial model with 24 objects and generated scaled-up models with up to 480 objects. This

upper limit on model size was determined by the limited available memory in these devices.

Queries. To assess the query-based runtime monitors, we used multiple safety properties
from MoDeS3 (see their definitions in Appendix A). They are all based on important aspects of
the domain, and they have been integrated into the monitoring components. Our properties of
interest are the queries described in Example 1. The monitoring query misalignedTurnout in
this evaluation had a slightly simplified definition compared to Appendix A, and this version

is the one presented in Example 14.

66

6.3 Evaluation

49 436 4306 43006
157 L] = o
— ﬁ 600 - 6000
0 60
£
v 4 °
£ h 400 4000
= 40 4
-
5 8 3 -+ +
o
._g
3 57 8 204 200 4 2000 -
O
X
" Iil == s - -
04— 04— 04°®
T T I_‘4 T T T IM T T T IM T T T I_‘4 T
" 3 ” 3 ” 3 " 3
s £ £ 2 & £ £ 2 & £ £ 2 s g £ 2
5 8 B 3 % 8 B 3 % 8 B 3 5 8 B 3
g + © g = B @ g = B © g + © ©
2 5 L %5 3) e 5 3) e 5 2 5 L %5
2 2 2 2
£ © M T £ © » T £ ©° X T £ © ¥
S O § & }f_j O 8 & E O 8 & S O ® &
= = = =
Query

Figure 6.3: Scalability evaluation of query execution on a BeagleBone Black SBC

6.3.2 Measurement Results

Scalability evaluation

The query execution times over models deployed to a single BBB were measured to obtain
a scalability of the evaluation for each monitoring goal. In Figure 6.3, each box captures the
times of 29 consecutive evaluations of queries excluding the warm-up effect of an initial run
which loads the model and creates necessary auxiliary objects. A measurement starts as query
execution begins, and terminates when all matches from the entire model are collected. The
programs deployed to the BBB were compiled with clang++ 4.0. Furthermore, Figure 6.4 shows

the average run times for each query over different model sizes.

Findings for RQ1.

model size up to 43k objects. In our experiments, queries with subquery calls in their defini-

In Figure 6.3 and Figure 6.4, queries show linear scaling with increasing

tions (mt and eos) take longer to execute than the ones (ct and tl) without such constructs.
However, the length of a declarative query definition (i.e., the number of constraints in a
query) cannot forecast the relationships between query execution times. The reason for this
lies in the declarative nature of the high-level query definitions. These definitions, although
easier to comprehend due to their conciseness, they hide the exact steps required for their

evaluations.

67

6.3 Evaluation

10 4

T
O
o
<

Model Size

49
4306 A
43006 -

E 1000 A Query

E —o— Train locations

i 100 - —4— Close trains

'..% —#- Misaligned turnout
g —+— End of siding

L

Figure 6.4: Query evaluation average times on a BBB SBC across models with different sizes

Up to medium-sized models, a 10x increase in model size yields approximately 10x in-

crease in the average of the measured execution times for each query, which suggests

linear scaling w.r.t model size.

Comparison of query run times over different microcontrollers

To see a comparison between query run times on different embedded devices, we picked three
different well-establised microcontrollers with ARM Cortex-M0+, Cortex-m4, and Cortex-M7
cores: Atmel ATSAMD21G18A, Infineon XMC4500, and STM STM32F767Z1

The bare-metal query programs were compiled with the default GCC compiler for ARM

version 7.2.1 20170904 compile flags. We executed them on each microcontroller while no

other tasks (e.g., interrupts) were scheduled. Because these programs take tens or hundreds of

microseconds to execute, we applied the following measurement setup to obtain an estimate

of average program run times:

1. First, we created an infinite loop and observed the loop execute n times under a fixed

time duration Ty,e4s (in our case Tpeqs = 15).

2. Then, we added query execution to the loop and repeated it over the same graph, and

counted m loop executions under Tjeqs.

3. Finally, we used the formula Tyyery, = (% - %) - 10°us to get the average run times of

query evaluations on given input models.

68

6.3 Evaluation

ATSAMD21G18A XMC4500 STM32F767ZI1
— 1.000 -
£ Query
)
E 0.100 - -~ Close trains
Z - End of siding
g 0.010 - - Misaligned turnout
S
3 —— Train locations
x
Ll 0.001-

1 1 1 1 1 1 1
24 48 120 240 480 24 48 120 240 480 24 48 120 240 48
Model Size

Figure 6.5: Query execution times on three different ARM-based microcontrollers

Repeated measurements of the average program run times obtained this way show negligible
variation (in the order of a microsecond) for a given input graph, which is unsurprising since
it is the only task running in the system. Precision of the measurement could be further im-
proved, for example, by increasing the duration of the measurement which is currently set to

one second. The results obtained by using the described method are presented in Figure 6.5.

Findings for RQ2. For each query execution on each platform, we can observe linear scal-
ing of execution time with the size of the model. The biggest execution time differences be-
tween the used microcontrollers is attributed to the different CPU frequencies driving these
devices and the presence (or absence) of instruction and data cache. For these particular query
programs, instruction cache alone seems to greatly reduce execution time, as the difference in
CPU frequency between ATSAMD21G18A and XMC4500 is only 2.5x (with the latter having

a higher frequency), the measured run times are approximately 10x shorter.

The recurring control flow of query programs exploits the cache to a high degree, thus

these programs have much faster execution times on devices with instruction cache.

Impact of optimized query evaluation code

We assess the impact of optimizations applied to the C microcontroller code generated from
the query definitions. In the case of the two queries with subquery calls (mt and eos), we
compare the execution times of the implementations generated directly from the query def-

initions with the ones where we inlined subquery calls to optimize the program. In practice,

69

6.3 Evaluation

ATSAMD21G18A XMC4500 STM32F767Z1
le+01-
1e+00 -
m
>
=8
o
Te-01- =
2
s
i~ @
é le-02 -
o .
g Implementation
= 1e-03 -
Optimized
S 1e+01-
~§ Subquery calls
=
at
i <
u>j 1e+00 =
=
=
=]
1e-01- 2
g
2
Te-02 - =
1e-03 -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
24 48 120 240 480 24 4 120 240 480 24 4 120 240 48
Model Size

Figure 6.6: Comparison of initial and optimized query execution times on three different ARM-based
microcontrollers

separate C functions are generated from each declarative query allowing query composition
via function calls in the former case, while in the latter case, these functions are stand-alone
implementations of the complete query with no code reuse between them. The results are

presented in Figure 6.6.

Findings for RQ3. We can see a factor of 1.7-2.7 between the observed run times of the
two versions of query programs with the optimized version being faster and no significant
differences in characteristics on the three devices. This makes the overhead of explicit sub-
query calls apparent (independently from execution platform), and for applications that are
not only real-time but also need fast execution times, one can achieve performance gains at

the cost of using slightly more program memory in a device.

[Optimizing query code by inlining C function calls is a favorable way to reduce run time.]

70

6.4 Summary

6.3.3 Threats to Validity

Construct validity. The presented evaluation uses four different monitoring queries with
different complexities from the MoDeS3 demonstrator. The imperative implementation syn-
thesized from the high-level description of the queries follows the structure presented in Sec-

tion 6.2, and each implementation was validated manually.

Internal validity. The software component used in the evaluation relies on no external
software dependencies (e.g., operating system and standard library). As such, a well-controlled
environment with precise measurement of query evaluation times is used. However, the pre-
sented evaluation relies on built-in debugger features of the hardware platform, which means

that the precision of the presented results relies on the precision of such debugger features.

External validity. The presented evaluation relies on a single case study (MoDeS3). Per-
forming the query benchmarks on additional case studies (other domains) would help improve
the confidence in the results. Moreover, it would be useful to assess the execution times in an
environment where other tasks are running in the system as well. This setup could provide a

better insight into the impact of hardware caches with a more realistic workload.

6.4 Summary

This chapter showed how graph queries can capture safety monitoring objectives focusing on
structural properties on a high-level of abstraction. We provided an algorithm to generate im-
perative code from the declarative query definitions. Furthermore, we deployed four different
monitors to various devices used in the MoDeS3 demonstrator, and evaluated the scalability
of the approach on them and compared the measured times across different devices. Our re-
sults show that query programs can handle up to 43k graph model objects. Furthermore, we
also found that manual code optimization and available instruction cache can greatly speed
up execution of query programs on microcontrollers. The results in this chapter are part of

the second contribution group (Co2.1, Co2.4, and Co2.5).

Publications related to this chapter. The theoretical foundations of query-based runtime
monitors, which is first presented in the proceedings of International Conference on Funda-
mental Approaches to Software Engineering [c5], is my contribution. Furthermore, in the
paper [c5], the evaluation of the approach on the BBB hardware was carried out by Gabor

Szilagyi, while Andras Voros was providing continuous feedback on the work.

71

Timing Analysis of Embedded Query

Programs

In this chapter, we provide timeliness guarantees for runtime monitoring programs generated
from high-level query specifications. Providing strict timeliness guarantees enables their use
in a hard real-time setting. While it is possible to compute safe worst-case execution time
(WCET) bounds by using existing static WCET estimation techniques, they may greatly over-
estimate the WCET of query-based monitors as they are unable to exploit domain-specific in-
formation about the input models. In this chapter, we introduce the challenges of computing
WCET for query-based monitoring programs and provide timing analysis solutions to com-
plement the current state-of-the-art WCET analysis approaches by automatically considering

domain-specific constraints on the input data.

In Section 7.1, we discuss the challenges of the timing analysis of such query-based run-
time monitors. Section 7.2 overviews the state-of-the-art analysis techniques and presents two
complementary WCET analysis methods. The first static (design time) method relies on pre-
cise execution time estimation over a specific graph based on low-level analysis results from
existing tools (Section 7.3). Then, in Section 7.4, this execution time calculation is used as the
objective function of a modern graph solver, which allows the systematic generation of input
graph models up to a specified size (referred to as witness models) for which the monitor is ex-
pected to take the most time to complete. Hence the estimated execution time of the monitors
on these graphs can be considered as safe and tight WCET. In Section 7.5, we show a comple-
mentary solution to provide rapid recomputation of run time estimates over a given model to
support cases when models are beyond the size of the witness model. To combine the static

and dynamic WCET estimation methods, we propose hybrid WCET estimation in Section 7.6.

72

7.1 Timing Analysis Challenges

Finally, we perform experiments with query-based programs running on a real-time platform
over a set of generated models to investigate the relationship between execution times and
their estimates, and compare WCET estimates produced by our approach with results from

two well-known timing analyzers, aiT and OTAWA.

7.1 Timing Analysis Challenges

Estimating the WCET of query-based monitors is a highly complex task which involves mul-
tiple classic challenges of timing analysis. The runtime model of the system is a continuously
changing data structure that captures an up to date snapshot of the underlying running sys-
tem. Hence, it is not sufficient to analyze execution time on a single input model, but all models

possible at runtime must be considered.

However, the space of possible models is enormous. For example, in a metamodel with a
single class and 3 reference types each having 0..% multiplicity bounds, there may be up to
232525 = 21875 djstinct models with 25 objects. In this simple case, the following explins this
estimate: there may be three different types of edges pointing to each object (including itself)
in the model. This results in 232 different configurations of outgoing edges for an object, and
there are a total of 25 objects which maintain their outgoing edges independently from other

23-25~25

objects in the model, yielding possibilities. Thus, explicit enumeration of graph models

is intractable, which necessitates the use of abstractions.

Another major challenge is that query execution time is heavily data-dependent, i.e., the
same control flow of a query program may have substantially different run times based upon
the structural characteristics of the underlying graph model. Assuming some constraints on
model size (e.g., capped by available memory) and some general restrictions on model scope
(e.g., there are more segments than trains in any real model), a key open challenge is how
to provide a model where the execution time of a particular query program is maximal. In this
thesis, we propose systematic generation of witness models that maximize an estimate of the

run time, which aids in WCET analysis and in identifying bottlenecks in query execution.

Moreover, is also important that the same graph model can be represented in memory in
many ways, and different placements of the same data can cause different run times. For ex-
ample, two memory image of the same graph may differ in the order the objects are stored
in an array. For this reason, two different in-memory representations of the same graph may

yield different run times, which must be considered when computing WCET of graph query

73

7.2 Graph Model-Based WCET Estimation

programs. Thus, WCET estimation even for a single concrete input model must tackle the de-
pendency of execution paths on the data representations. As a single model of n objects has n!
possible in-memory representations even when inserting the objects into a single continuous

linear array of n elements, explicit enumeration is again intractable.

7.2 Graph Model-Based WCET Estimation

7.2.1 Existing WCET Analysis Methods

Static WCET analysis is traditionally divided into two major phases: high-level or flow analy-
sis and low-level analysis. On the one hand, flow analysis aims at reconstructing the program
flow and deriving control flow graphs (CFGs), which are then annotated with additional in-
formation called flow facts about the execution. The nodes of such CFGs are basic program
blocks (BBs), which represent series of instructions in the program with one entry and one
exit point. On the other hand, low-level analysis aims at computing hardware-specific timing
parameters of BB executions. Note that our current work primarily focuses on flow analysis
of WCET estimation while low-level WCET analysis is out of scope and we rely on low-level

analysis results from other approaches.

A common flow analysis approach for static WCET computation is the implicit path enu-
meration technique (IPET) [LM95]. This method analyzes the control flow of the program to
compute a sequence of instructions that yields the longest possible execution. IPET is based
on solving an integer linear programming (ILP) problem constructed from the program CFG

and flow facts.

The IPET method necessitates costly computations to solve the underlying ILP problem.
For that reason, it is only applicable for design time WCET computation for real-time systems
(but not for WCET recomputation at runtime). However, the symbolic method proposed by
Ballabriga et al. [BFL17] is capable of providing parametric WCET formulae which are cheap
to recompute in case the program flow facts change. The drawback of this approach is that
the overestimation in the produced WCET can be slightly larger than the one produced by
IPET. However, with more concrete information available at runtime about the model, this
estimate computed at runtime (on-line) can provide lower bounds than the statically (off-line)
computed IPET.

74

7.2 Graph Model-Based WCET Estimation

Table 7.1: WCET analysis approaches for data-driven runtime monitor programs

Inputs Outputs

Low-level analysis inputs

CL HW description + Query program WCET estimate

Value analysis inputs

WCET estimate

VAL HW description + Query program + Concrete model + Memory image . . .
for single memory image

Domain-specific high-level analyis inputs

DSy HW description + Query program + Concrete model WCET est. for single model
WCET est. for all valid models
+ Witness model

WCET est. for a single model
+ Recomputable at Runtime

DSs HW description + Query program + Constraints

OLS); HW description + Query program + Condensed Model Statistics

7.2.2 Comparison of Timing Analysis Approaches

Table 7.1 illustrates the relationships between the existing and proposed approaches to the
WCET analysis of query programs. Classical (CL) WCET analysis is based on the binary code
of the query program and the characteristics of the hardware platform, but does not consider

structure and the well-formedness of the input runtime models.

Example 17. Static analysis of the code of the misalignedTurnout query itself in List-
ing 6.2.1 would not impose any restrictions on line 17 despite the fact that the domain-
specific scope constrain prescribe that S(Train) = [0, 3]. Therefore, the condition in
this line can evaluate to true up to three times on well-formed models within the model

scope, yielding a flow constraint that is not discoverable by analysis of the code only.

Value analysis (VAL) can derive more precise WCET estimates for executing a query on a
single memory image (comprised of a single concrete model). However, it is unable to consider
equivalent in-memory representations of the same concrete model, or to cover all possible
consistent concrete models, thus it is unsuitable for the analysis of data-driven monitors (thus

it is greyed out in Table 7.1).

To alleviate this issue, we propose two domain-specific (DS) static WCET analysis methods
for data-driven monitors. We introduce the concept of witness models, which are consistent

models that are feasible inputs of the graph query program and maximize the WCET estimate

75

7.2 Graph Model-Based WCET Estimation

for all models within the given scope. They serve as representative data to calculate WCET for

any model within the scope.

« First, we estimate WCET for a single concrete model (we refer to this method as DSy).
The estimate is valid for all in-memory representations of a given concrete model M.

« In the second case, the set of possible runtime snapshots is specified with metamodel
(Z, a) along with well-formedness and scope constraints (DSy). This WCET estimate is
valid for all possible runtime snapshots within the memory limits of the system, i.e.,
for all consistent instances of the metamodel up to the size specified by the scope con-

straints.

Furthermore, we propose to adapt a symbolic WCET formula [BFL17] for graph query
programs to allow fast recomputation of WCET at runtime using on-line statistics (OLSys) of
the runtime model snapshot M to provide support for cases when M no longer fits the model
scope used for deriving witness models for a query. The parametric WCET formula relies on

condensed model statistics about the graph that is available at runtime.

7.2.3 Overview of the Approach

We address the WCET estimation challenge for graph query programs in two complementary
ways: the static DSy approach (used at design time) and the on-line OLS,; approach (usable at
runtime) methods. On the one hand, DSy, can provide upfront WCET bounds for models within
the model scope by synthesizing and exploiting M* witness models. This estimation achieves
tighter WCET bounds (compared to other existing methods) by (1) precisely incorporating
data flow information during WCET estimation and by (2) excluding unrealistic models that
would often yield high WCET estimates.

On the other hand, when a runtime model snapshot ends up being outside all (statically
determined) model scopes used for obtaining witness models, no design time WCET estimates
would be available. Therefore, as a fallback strategy, we provide OLS,, to rapidly recalculate
WCET at runtime by adapting parametric WCET formulae [BEL11; BFL17] and exploiting

some aggregated model statistics.

To illustrate the relationship between possible input models, Figure 7.1 sketches the model
space of runtime graph models (represented with dots), i.e., the set of all input models. Possible
changes made to a model at runtime (depicted as arrows) result in a new model. To obtain a

safe and tight WCET estimate for query programs, we make some assumptions about realistic

76

7.2 Graph Model-Based WCET Estimation

® ® Model within/outside the scope
¥ Witness model within the scope

Model scope Model space

o + % Model updates within/outside the scope

Figure 7.1: Classification of query input models and model updates from the perspective of WCET

analysis
. . Derive Model
Design time Generation Constraints Model Generation _>©
> + Metamodel 3. > : G
+ Well—Formedrzéss Constraints T !
+ Model Scope | i
+ Initial model P (optional) ® - let{zﬁsa//gggel
Generate C Program Compute Model
and Compile Executable Static WCET Analysis Generation ObJeCt"’e(C‘
1 . b= DS): or DSP
+ Monitoring Goal Spec. + Hardware Description @ Compute Parametric
+ Metamodel > @ WCET Formula O‘:\ !
T
Runtime Ty S E N ——
L On Line WCET Vv ! WCET Estimate
._)i Update Runtime MOdeI@j_) Parametric WCET Formula > 53|€\§"/fé-g_‘|§/22t\i/;|:fe35
T + Runtime model statistics (Pp 0 l

|
1 Schedule Tasks and Execute Query d

Figure 7.2: Workflow of WCET estimation for query-based monitors

(and consistent) models captured in the form of a model scope. The witness model M* for the
consistent instances of the metamodel within the model scope is depicted as a blue star in
Figure 7.1. If the runtime model snapshot lies outside the model scope (gray dots), then the
result of OLS;; can be used as the WCET as a static WCET estimate based on a witness model

is not available.

Figure 7.2 shows both design time and runtime aspects of our proposed approach. In the
top part, the high-level workflow with design time tasks of obtaining two complementary
WCET estimates is presented. The static WCET estimation DSy relies on objective-guided
generation of witness models, where the objective function is derived from the monitoring
goal (i.e., the high-level query specification) and the low-level timing properties of the mon-
itoring program. Any additional external input during this process is marked with + in the
process overview. The process starts with the synthesis and compilation of the monitoring
program (marked with A in Figure 7.2) where both monitoring goal specification and the
metamodel are inputs from the user, and it is followed by classic WCET analysis, e.g., using
the IPET method (B). Subsequently, the results of the WCET analysis are used to compute a
model generation objective (C). This objective is to maximize the function that computes the

execution time of the query program over a given instance model.

77

7.3 Approximating Execution Time With Predicates

In parallel with these activities, constraints are derived for generating well-formed models
in the given domain (D). Combining the results from activities C and D, the model generation
step (E) uses a graph solver to systematically generate the model that maximizes the objective
function, i.e., the WCET estimation. As a result, the workflow not only computes a safe, static
WCET value, but generates a witness model where the WCET estimation is maximized. This
thesis focuses on how to use the model generator to obtain witness models, but the technical-

ities of the underlying model generation process are out of scope [Mar+20].

The proposed on-line WCET estimation OLS,; starts with similar steps as DSs by obtain-
ing the source code and executable for the query program (A), then performing static WCET
analysis (B). Using the results of (B), a parametric WCET formula is derived (F) using the algo-
rithm proposed by Ballabriga et al. [BFL17]. While obtaining this formula happens at design
time, the exact WCET bounds are obtained at runtime once the relevant underlying runtime

model statistics are known.

The bottom part of Figure 7.2 highlights the stages of real-time monitoring program ex-
ecution. Once updates to the runtime model are completed (G), the parametric WCET for-
mula is instantiated and a safe, on-line WCET bound is obtained (H). Computing a formula at
runtime requires minimal computational effort, thus it can be repeatedly recomputed during
program execution. The on-line and static WCET bounds (if the latter is available) are then
simply compared, and because they are both safe estimates for the current model, the lower
value is selected as WCET estimate (1). If there is no static estimate, the value provided by
OLSy; is used. This value (computed at runtime) is then used as the required time window
while scheduling of tasks (J), and after completing query evaluation and the rest of the tasks,

program execution will eventually continue processing model updates (G).

7.3 Approximating Execution Time With Predicates

To characterize the data-dependent execution time of graph query programs, i.e., formulate
DSy, we derive an upper bound function f; assigning approximate run times of the query q
to model M. Formally, RTq(M) < fq(M), where RT4(M) is the execution time of the query

program q on instance model M.

For each basic block BB; of the CFG of the query program q, we construct a graph predicate
¥Bg,. The free variables vy, . .., i of /g, correspond to the program variables within the pro-

gram scope when BB; is executed. When the query program runs on an input model M, each

78

7.3 Approximating Execution Time With Predicates

execution of BB; corresponds to amatch Z: {vy,...,0x} — On of Yp. (Z € Matches(M, Ypp.)),

where Z(v;) is the model object referenced by the variable v; upon the execution of BB;.

To achieve this, we set {/gp, to the conjunction of extend and check constraints in effect
on the variables in the program scope. Extend operations (evaluated by loops) introduce new
free variables, while check operations (evaluated by if conditions) only restrict the possible
binding of existing variables. As we have shown in Section 6.2, search-based query plans
translate to a series of nested loops and if conditions. Thus, /g, is the conjunction of extend
constraints associated with loops and check constraints associated with if blocks that enclose

BB;. For enclosing else blocks, the negation of the check condition is taken instead.

Basics blocks BB of loop headers require special attention, since a loop variable vj can be
uninitialized or it may have a value from the previous iteration of the loop. Hence, in addition
to the predicate l//BBj_ with free variables vy, . . ., vg_1, U, we also introduce a predicate l//l;B* with

i

free variables vy, ..., vx_; to represent the first execution with vy still uninitialized.

Definition 13. The upper bound for the execution time of q on a model M can be written
using graph predicates by summing up the worst-case execution times of basic blocks

weighted by the number of times each basic block is executed as follows:

fo(M) =" (T(BB)) - |Matches(M, ys,)|)

ieD

+ Z [T(BB;) - (IMatches(M, Vi)| + [Matches(M, ¥ss)|)]
JjEL

(7.1)

where

o T is a function that returns the WCET of a basic block in the CFG;
« D is the set of the indices of basic blocks that are not loop headers; and

« L is the set of indices of loops.

The function f, is a linear function of the match counts of the graph predicates as defined
in Section 3.3. Therefore it is not only an upper bound for the execution time of q on a given
model M, but can also serve as an objective function in a model generation task created when

using DSs. In Figure 7.2, the function f; is defined in activity C and used in activity E.

79

7.4 Witness Generation of Worst-Case Execution Time

Example 18. We illustrate the execution time estimation method using the query mis-
alignedTurnout. To construct the graph predicates yzp, and l//éB; for the query program
in Listing 6.2.1, we have to inspect the query plan in Table 6.1, its traceability to the gen-
erated code (shown as comments in Listing 6.2.1), and the CFG of the code (Figure 6.2).

By tracing each basic block to the code lines and to the query constrains, we obtain

VBB, =1, g, = Turnout(mt), VBB, = 1, ¥, = Turnout(mt),
Ypp, = Turnout(mt) A Straight(mt, loc),

Ypp, = Turnout(mt) A Straight(mt, loc) A ~Conntected(mt, loc),

¥, = Turnout(mt) A Straight(mt, loc) A =Conntected(mt, loc) A OccupiedBy(loc,t),

VBB, = Turnout(mt).

Since BB, is aloop header, we also have y/;; = 1 to account for the first, unconditional
execution of BB, with the variable mt yet uninitialized. Therefore one can write the upper

bound of the execution time on a model M as

8
Jart (M) = Z(T(BBi) - |Matches(M, ygp,)|) + T(BBz) - |Matches(M, ‘%BBZ)l-

i=1

7.4 Witness Generation of Worst-Case Execution Time

In the static WCET analysis step of DSy, we compute an upper bound of the execution time of
a model query program given a set of constraints (defining the space of well-formed models)

and the scope of the analysis at design time.

Given a theory 7 and type scopes S, we derive the WCET estimate of a query program q
of the set of models satisfying 7 and S by maximizing the upper bound function fg.

Definition 14. This yields a static WCET estimate WCET (7, S) as the computation of

this estimate necessitates the use of a model generator at design time. Formally,
WCETL(T ., S) = fo(M"), where M" € optimal(%, 7", S, fq). (7.2)

where M* is a witness model of the maximum value of f;.
Therefore, RTq(M) < WCET (7, S) holds for all instance models 7, S £ M.

30

7.5 On-Line WCET Estimation for Graph Query Programs

We include the witness model M* (with the used theory 7~ and model scope §) for il-
lustration in Figure 7.3a which maximizes fy¢ and yields the WCET,, estimate for the query
program misalignedTurnout from Listing 6.2.1. The theory 7 used in the generation pro-
cess contained the multiplicity constraint @ct—ouspeg that caps the out-degree of connectedTo

references at 2.

The witness model M* can be inspected to study the extreme execution time of the query
program q and may aid in further query optimization. However, M* is not necessarily an input
where the real program WCET is exhibited: it may be the case that RTq(M*) < RTq(Morst)
for some other model 7,8 E Mo, even though we still have fq(Myor) < fq(M*) and
RTq(Myorst) < WCETH(T, S).

Gradual refinement of the theory 7 and the scopes S can aid the designer in query pro-
gram analysis. In particular, if the estimated WCET;(T, S) is too high, we may extend the set
of constraints to 7’ 2 7 to more precisely specify the space of well-formed models. Alterna-
tively, if it is not feasible to further extend the theory of well-formedness constraints 7~ and

thus restrict the set of well-formed models, we may opt for constraining the model scope S.

Proposition 1. For a query program q, theories 7, 7, and model scopes S, S’ the fol-
lowing inequality holds (see proof sketch in Appendix B.):

WCETL(T",8") < WCET(T,S) if 7/ 2 7 and VC; € %: §'(C;) € S(Cy). (7.3)

7.5 On-Line WCET Estimation for Graph Query Programs

The primary goal of on-line WCET estimation OLS), is to serve as a fallback to cover cases
where the underlying runtime model M lies outside the model scope used for computing static
WCET bounds or violates well-formedness constraints. Our idea is to exploit model statistics
collected at runtime, such as (1) the number of nodes that are instances of a certain class or
(2) the maximum out-degree of a node w.r.t a given reference type. As discussed in Section 5.1,
these model statistics can be collected and maintained as part of the updates to the runtime
model. As such, the current values of model statistics can be used as flow facts for loop bounds
when instantiating a WCET formula of a specific query. The resulting WCET value can be used

to reallocate execution time slots and reschedule tasks on-the-fly [CSB90].

81

7.5 On-Line WCET Estimation for Graph Query Programs

Pct—outDeg =
ConnectedTo(t,s;) A ConnectedTo(t,s;) A ConnectedTo(t,s3) A —(s;=s2 Vs =s3Vsy;=s83) €T

S(Segment) = [0, 6], S(Turnout) = [0, 3], S(Train) = [0, 3]

(a) Witness model M* for query misalignedTurnout (b) Instance model M’ with 12 objects and satisfying
with 12 objects and satisfying theory 7~ and model theory 7~ but exceeding the model scope S (more
scope S Trains and Turnouts)

Figure 7.3: Illustrating model generation problems for witness models

In Section 6.2, we showed how search-based query plans can be translated to a series of
embedded loops and if-conditions. Thus, the CFG of such a program has several cycles. We
leverage the algorithm presented in [BFL17] that takes a program CFG and outputs a formula

where the parameters are loop bounds, i.e., how many times a cycle in the CFG is executed.

Definition 15. A parametric WCET estimation formula for a graph query program q used

to derive WCET bounds at runtime can be defined as follows:

WCET(stats) = » T(BB) + (T(BBh, ;) +1(stats) - T(Loop,, stats)) (7.4)
iGDo jELO

T(Loop;, stats) = Z T(BBy) + Z (T(BBum) + Ln(stats) - T(Loop,, stats)) (7.5)
kEDj meLj

In these formulae

stats is the model statistics related to the model scope of a given concrete model;
Iy returns the loop bound of the k-th loop for a model statistics (I (stats) € N);
« T is a function that returns the WCET of a basic block or loop in the CFG;

+ Dy is the set of BB indices that are not contained in any loops but are part of the

longest program execution path in the CFG of the query program g;

82

7.5 On-Line WCET Estimation for Graph Query Programs

Dj (j > 0) is the set of BB indices contained directly in Loop; (i.e., not part of other
loops) that are part of the longest path within the loop;

Ly is the set of loop indices of loops that are not contained in any loop in the CFG

of q;

L;j (j > 0) is the set of loop indices of loops contained directly in Loop;; and
the BB for loop header of Loop; is denoted with BBy ;.

Once WCET] is formulated, it is easy to instantiate it because a multiplication is done

for each parameter and then, the timing values are summed up. This computation is simple

enough to instantly obtain a new WCET estimate when model statistics are available.

Example 19. Figure 6.2 shows the CFG built from the mt_matcher function with its
corresponding BBs. The lines corresponding to BBs in Listing 6.2.1 are shown next to the
nodes of the CFG. The WCET formula for the mt_matcher function built from the CFG

shown in Figure 6.2 is the following:

WCETS, (stats) = T(BBy) +T(BBs) + » (T(BBh, i) +1(stats) - T(Loopj))
jeiy

8
= T(BB;) + T(BBs) + T(BB,) + l;(stats) - (T(BBZ) + Z T(BBk))
k=4

Here T(BB;) is the WCET of a basic block BB; and the value of [; (stats) is the flow fact

for loop bound, which is in this case the number of turnouts in a given model.

To illustrate the impact of model statistics, we compare the model M* presented in
Figure 7.3a with model statistics statsy;- with the one obtained from a synthetic but
still well-formed runtime model snapshot M’ shown in Figure 7.3b with model statistics
statsyy . Both models have a total of 12 nodes but their model statistics (i.e., the number
of instances of each class) are different; statsy;- (Turnout) = 3, while for the other model
statsyp (Turnout) = 4. For this reason, the query program mt_matcher takes longer time
to complete when evaluated over M’. The query plan starts with iterating over all turnout

nodes, so the WCET}, parameter is ; (statsy-) = 3 for M*, while [y (statsyy) = 4 for M'.

The static WCET estimate of a query program for some particular scope of models S may

not be tighter than the on-line WCET computed for a model M in the scope. It may be the

33

7.6 Hybrid WCET Estimation

case that WCET (statsy) < WCET(T,S) evenif 7, S £ M, especially when statsy is much

smaller than the statsy;- belonging to the witness model M* providing the static estimate.

However, for any (well-formed) model M, WCET, computed by fq(M) is always at least
as accurate as WCETg. Compared to the WCET] estimate, WCET; may take into account the

theory 7 in addition to the statistics statsy;, and fy also has access to the whole model M.

Proposition 2. The following inequality holds between execution times and their esti-

mates:
RT4(M) < fq(M) < WCET (T, statsy) < WCET((statsy), (7.6)

where statsy((C;) = [statsy(C;), statsp(C;)] is the scope corresponding exactly to the
model statistics statsyy, i.e., is the scope where the lower and upper bound is equal to the

number of elements in the model statistics. See proof sketch in Appendix B.

7.6 Hybrid WCET Estimation

We propose a hybrid estimation method to leverage both results by DSy and OLS,,. For models
satisfying the type scopes S taken into account when calculating the static estimate, the lowest

of the two estimates is taken. For models outside of S, we fall back to the on-line estimates.

Definition 16. The hybrid WCET estimate of a query q over a well-formed runtime model
with statistics stats is formally defined by the function

min{ WCET} (T, S), WCET{(stats)}, if S k stats,

WCET/(stats) = (7.7)

WCETf1 (stats), otherwise,

where 7', S, and the value of WCET((7", S) is provided ahead of time.

Computing WCETQ’ only requires the type scope check § ¢ stats and the computation of
the minimum in addition to the evaluation of the WCET?l estimate, both of which can be done
in constant time. Thus, there is no significant overhead compared to the WCET] estimate.
We may avoid checking whether the current state of the runtime model satisfies 77, since, by

assumption, 7 is chosen such that all possible runtime models are well-formed.

84

7.7 Evaluation

7.7 Evaluation

We conducted experiments to answer the following research questions related to the WCET

of query programs:

RQ1 How difficult is it to find witness models?

RQ2 How tight are static estimates w.r.t. existing approaches and real execution times?
RQ3 How do static and on-line WCET estimates compare when applied to query programs?
RQ4 How does query program complexity impact the overestimation of computed WCET?

7.7.1 Evaluation Overview and Setup

Queries

To address these research questions, we use graph queries from the domain of the MoDeS3 CPS
demonstrator (see Chapter 2). This demonstrator uses high-level runtime monitoring rules
captured as graph queries, and showcases synthesized monitoring programs executing these
queries over the runtime graph model of the underlying running system. Our experiments
focus only on query evaluation, and updates to the runtime model are out of scope for the
thesis. Therefore, we ran the query programs on various snapshots of runtime graph models.

We evaluated the queries introduced in Example 1.

The calculation of query search plans is out of scope of the thesis, but they were cre-
ated and optimized based on the typical model statistics of runtime model snapshots in the
MoDeS3 system. Although search plans were shown to be highly efficient if they are updated
as the properties of the undelying model changes [Var+15], the ones calculated for the realis-
tic model were used throughout the entire evaluation. For example, the search plan presented

in Table 6.1 is the one used by the program executing the query Misaligned turnout.
WCET algorithms and WCET tools

To compare the results produced by our WCET estimation approaches DSy and DSp with
estimates produced by other tools, we used the commercial aiT [FH04] (version 20.10i) and the
open-source OTAWA [Bal+10] (version V1.2.0) tools. While aiT comes with inbuilt platform
model for XMC4500, the respective OTAWA script was taken from a public repository of an

85

7.7 Evaluation

external research group specialized in the analysis of embedded systems’. For aiT, we used a
high precision configuration with pipeline-level analysis and full loop unrolling, as well as a low
precision configuration with only basic block-level analysis and no unrolling. To incorporate
the results of low-level analysis into DSy and DSp, we extracted the IPET linear equations
from the low-level configuration of aiT manually, as no facility was available for automatic
export or accessing the high precision system of linear equations directly. We also extracted
the IPET linear equations from OTAWA, which have BB execution context information (paths
of length two).

Similarly to DSy, we rely on the low-level analysis results from aiT and OTAWA to employ
OLS)s and compute WCET® for query programs. Using this low-level analysis information, we
compute parametric WCET formulae. Due to the lack of available tool support, we used a semi-
automated WCET formulae computation by applying the algorithm described by Ballabriga
et al. [BFL17].

Graph models

In the following, we describe how we obtained a variety of models to assess the impact of

models with different characteristics on query evaluation times.

Using the metamodel in the MoDeS3 case study, we generated witness models M* for each
monitoring query and for both low-level analyses (aiT, OTAWA) such that the query is esti-
mated to have the longest possible execution time according to the low-level analysis. For all
of these models, we used the same model scope inspired by the railway domain: up to 20%
of the objects can be Trains and up to 20% of the objects can be Turnouts. The rest of the
objects are Segments; we capped the maximum number of objects at 25. The resulting M*
models are syntactically valid and they can represent a realistic railway system thanks to the
domain-specific well-formedness constraints. Furthermore, to obtain a realistic model M;e,
we manually captured a detailed runtime model snapshot of MoDeS3 that is similar to the one

presented in Figure 3.2b with 25 objects and respects the domain-specific model scope.

To assess the execution times of the query programs on random models, we generated
models conforming to the MoDeS3 metamodel with up to a total of 25 objects. Due to the
large space of possible graph models, representative sampling from the model space is an

open question [JSS13; Sem+20]. Nevertheless, we generated 250 models with the open-source

"https://github.com/uastw-sat/ARMv7t-WCET-Analysis

86

https://github.com/uastw-sat/ARMv7t-WCET-Analysis

7.7 Evaluation

EMF random model generator? (Rand) with up to 5 Turnouts and up to 5 Trains, but none
of them represents a railway setting that can occur because they all violated well-formedness

constraints due to the completely random construction.

We also generated 250 models with the VIATRA Generator (VG) without an optimization
objective. These models satisfy all well-formedness and scope constraints we used for gener-
ating witness models. However, the state exploration heuristics of the generator may lead to

a biased sample.
Hardware setup

We use the Infineon Relax Lite Kit-V1 Board® to execute the query programs. This board has an
XMC4500 F100-K1024 microcontroller and it is driven by a 120MHz system clock. This micro-
controller is considered to be a mature industrial microcontroller and has an ARM Cortex-M4
core. For the present evaluation, the instruction cache on the device is not used as our primary
focus is on the impact of domain-specific information about high-level program flow rather

than microarchitectural effects.

The bare-metal query programs are compiled with GCC compiler for ARM version 7.2.1
with -00 and -g3 flags in debug mode. These programs run on the microcontroller while no
other tasks (e.g., interrupts) are running. We rely on the cycle counter feature of the Data
Watchpoint and Trace Unit in the device to extract the execution times of each query us-
ing a debugger. The embedded code used for the experiments as well as compiler and other

configurations are available online®.

7.7.2 Evaluation Results

Measured query execution times

We investigate if a witness model for a query can be obtained from simpler graph generation
approaches, and we do this by measuring the execution times of queries over various models.
Our results are presented in Figure 7.4a. The run times over models by VG is captured by the
green boxes, while the orange ones show the run times over models by Rand. Each query was

evaluated on the same two sets of models. Additionally, the respective query execution time

*https://github.com/atlanmod/mondo-atlzoo-benchmark
*http://www.infineon.com/xmc-dev
‘https://imbur.github.io/cps-query/

87

https://github.com/atlanmod/mondo-atlzoo-benchmark
http://www.infineon.com/xmc-dev
https://imbur.github.io/cps-query/

7.7 Evaluation

> Witness moglel for _ 2652 1231 . 489
- close trains
S Witness model for
A] -
g 2000 8 end of siding 1713 1395 900 489
e S
£ S > Witness model for o0 1030 939 489
oS S < misaligned turnout
ERS © Witness model for
22 1000-) . . - 2334 1164 861 489
X S train locations
MoDeS3 snapshot .. 819 .
?% model
1 1 1 1 “— _8 -— 2
v . I 0 2252 m3 58
Q2 S £ L2 's T = el =
$8 E% 3i 3 CEGFESCE
== = -
Query Query
(a) Measured query execution times over consis- (b) Cross-comparison of measured query run times over
tent models (green box), random models (orange witness models and a model from the MoDeS3 demon-
box), witness model (blue star), and realistic model strator (systicks)

(red triangle)

Figure 7.4: Query execution times on fully random models and realistic models

over each witness model M* is added to these figures for comparison, where M* is the witness
model generated using the objective function built from the low-level analysis results of aiT.

Moreover, the run time over the hand-crafted M., model is also presented.

The heatmap in Figure 7.4b presents the obtained query run times for each query over
all witness models generated by the solver (e.g., Witness model for close trains represents the
model that maximizes the estimated run time of the query Close trains) and the realistic model
taken from the MoDeS3 system (MoDeS3 snapshot model). The diagonal in this figure shows
the measured execution times over models dedicated to maximize the WCET estimation of a

corresponding query.

Findings for RQ1. For consistent models generated with VG, queries exhibit the longest
observed execution times on their respective witness models. In fact, for two queries, eos and
mt, the execution time on the respective M* is longer than the maximum measured execution
time over any other consistent model, which highlights the importance of our witness model

generation technique.

38

7.7 Evaluation

Maximum run times over models generated by Rand can be both higher and lower than
on witness models. For example, query ct takes 2% longer over a random model than over
its witness model, but the random model does not represent a realistic railway. On the con-
trary, query eos takes at least 8% longer to complete on the witness model than on any model

generated by Rand.

Another important observation is that execution time is highly sensitive to the structure
and statistics of the runtime model. For example, Figure 7.4b shows that the query mt evalu-
ated over the witness model for query ct takes the shortest time to complete compared to the
execution times over the rest of the witness models and the realistic model. The main reason
is that in case of mt, the query search plan (see Table 6.1) in step 3 enforces that the turnout is
not switched in the straight direction. However, the query ct only relies on the connectedness
of segments via their connectedTo references, and the witness model for ct has most turnouts

switched in their straight directions which results in an early cut in the search.

Finally, we notice that query tl, which is a trivial query, exhibits the same execution time
for each consistent model generated with VG and each witness model. This query simply

iterates over Trains, and for all consistent models and witness models there are always 5 Trains.

Computing safe and tight WCET estimates of queries which execute over well-formed
models (1) is infeasible by collecting run times over random models, and (2) is feasible by

finding witness models by using sophisticated model generation approaches.

Assessment of Static WCET Estimates

Our goal is to compare the computed static WCETs obtained from different tools with our
own technique. Table 7.2 shows the WCET esimtates in the DSy, aiT, and OTAWA columns for
the 4 queries along with measured execution time (expressed in systicks) over the respective

witness model.

Findings for RQ2. In the case of ct, our WCET estimation approach produces estimates
14% tighter than the one by aiT (low precision analysis). It is also important to point out
that even without context-sensitive BB timings, our low precision approach provides only 3%
higher estimates than aiT’s high precision mode, which indicates that it is able to automatically
identify infeasible paths in the program based on high-level domain-specific information. For

OTAWA, improvements of the WCET estimate are achieved in two cases: ct has a 23%, while

39

7.7 Evaluation

Table 7.2: Query code complexity, measured execution time, and WCET estimates in systicks

Exec. time DS aiT OLSwm
Query CC over M* w/aiT w/OTAWA low pr. highpr. OTAWA w/aiT w/OTAWA
Close trains 7 2652 3133 3430 3563 3038 4210 3563 4280
End of siding 6 1395 1757 1820 1757 1477 1860 1757 1880
Misaligned t. 5 939 1097 1370 1097 987 1370 1097 1390
Train locations 3 489 592 695 592 507 695 592 715

eos has a 2% tighter estimate. For the rest of the queries, the analysis yields the same results

as aiT low precision mode or OTAWA.

Conceptually, it would be possible to formulate more precise DSy estimates by incorpo-
rating low-level analysis results from the high precision mode of aiT as shown in Section 7.4,

but such equations are not currently accessible in aiT.

WCET estimates with DSy are at least as tight as those obtained by low-level IPET analysis
in our experiments. Thus, domain-specific analysis can improve WCET estimates while

simultaneously synthesizing witness models to study query program behavior.

Comparison of Static and On-Line WCET estimates

Similarly to DSy, we computed one WCET estimate by using OLS,, for each tool we used to
obtain low-level WCET analysis results. Furthermore, we instantiate all 4 formulae for the

realistic model M,., as well and we get the following results:

o WCET?, (Mea) is 2869 with aiT and 3441 with OTAWA timings
o WCET, (Mrea1) is 1424 with aiT and 1521 with OTAWA timings
« WCET}, (Mrear) is 1097 with aiT and 1390 with OTAWA timings
« WCETY, (Mreq) is 493 with aiT and 589 with OTAWA timings

Findings for RQ3. Based on the results presented in Table 7.2, the parametric (online)
WCET formulae of monitor executions provide slightly higher estimates for each query in-
vestigated on witness models when compared to (static) IPET estimates in case of OTAWA,
and provides the same results as aiT low precision analysis mode. However, the rapidly re-
computable formula provides 15%-20% tighter estimates in three out of the four cases over
the MoDeS3 snapshot realistic model. In case of mt, the estimate is the same as for the wit-

ness model of mt. The reason behind these differences is the runtime model statistics for the

90

7.7 Evaluation

MoDeS3 snapshot model has one train less than the maximum number allowed by the model
scope, which is a key factor in the formulae of ct, eos, and tl, while the formula for mt does

not depend on this number.

Static estimates complemented with on-line WCET estimates based on runtime model

statistics provide safe and tight execution time bounds at runtime.

Impact of query program complexity

With RQ4, we look at the impact of query complexity on the computed WCET bounds, so
that we can give recommendations on where our approach offers the greatest benefits. The
execution times of queries over M* in Table 7.2 provide a lower bound to the actual WCET (i.e.,
the longest possible execution time of the program over inputs which represent well-formed
models in the model scope), while the CC columns shows query cyclomatic complexity. Since
the actual WCET of the program is unknown (but it must lay between the measured execution
time and the WCET estimates produced by the analyses), we use the measured execution time

over witness models as the baseline when discussing overestimation in WCET estimates.

Findings for RQ4. The biggest visible advantage of DSy is in the case of the most complex
query ct: the overestimation is 18% with BB timings from aiT, while the aiT low precision
analysis computes a 34% higher value than the measured execution time. In other cases, it
produces the same result as aiT, with overestimates being between 16% (query mt) and 26%
(query eos). We come to the same conclusion using BB timings from OTAWA, although these
timings are slightly more conservative. The high precision analysis available in aiT is able to
leverage the microarchitectural properties and thus provide the most precise estimates with
the overestimation being 14% (observed for query ct). The overestimation increases with CC

of the query code only in the case of high precision aiT analysis.

In general, DSy computes a safe WCET bound and additionally provides a witness model.
Moreover, it is able to discover additional infeasible paths for the WCET estimate for the most

complex query, thus providing a tighter estimate.

For complex queries, the precise count of BB executions by DSy gives tighter estimates
than the IPET method which heavily relies on manually provided flow facts. Overall, this
shows the strength of the proposed graph solver-based WCET estimation method.

91

7.8 Summary

7.7.3 Threats to Validity

Construct validity. In the assessment of the tightness of WCET, we compare the longest
measured run time RTq(M") and estimated static fq(M") and estimated on-line WCET¢ (statsy-)
run times. As mentioned in Section 7.4, this method can conservatively underestimate the
tightness of the computed WCET in case M™ # M,org;, i.€., when the longest run time RT 4 is ex-
hibited on My, and thus RTq(M*) < RTq(Myorst) < fq(M*) and RTq(M*) < RTq(Myorst) <
WCETg(statsM*). Ideally, this assessment should use RTq(M,,orst), however, this model is gen-

erally unknown.

Internal validity. Computed WCET values presented in this section are reasonable with
respect to the measured longest execution times. However, the platform model of the mi-
croprocessor may not be completely accurate (especially, in the case of the model used with
OTAWA), which can result in imprecision of computed WCET. The evaluation platform only
ran the monitoring programs; no other tasks were running on the same device which excludes
other external influencing factors. Finally, the algorithm for obtaining the parametric WCET
formula [BFL17] supports contextual information for refining BB timings (e.g., to incorporate
the effect of processor pipeline), but our formulae did not use this. For this reason, the for-
mulae we used might provide less tight estimates, but the computed WCET bounds are still

safe.

External validity. In addition to the hardware-specific considerations (i.e., replicating the
presented evaluation using other hardware platforms), evaluation of the WCET estimation
techniques along additional case studies with query-based runtime monitors from different
domains could further improve the confidence in the evaluation results. Moreover, we assume
that the presented results hold for larger models as well, however, the currently used model

sizes are capped by the scalability limits of the current version of the underlying graph solver.

7.8 Summary

This chapter investigated worst-case execution time analysis methods for query-based run-
time monitor programs to enable their use in hard real-time settings. To that end, we have
provided a brief overview of the state-of-the-art, and we have combined low-level WCET anal-
ysis results with a cutting edge graph solver to provide both tight execution time bounds and

input models where the longest execution is assumed. Furthermore, to support cases where a

92

7.8 Summary

result from the graph solver-based approach is not available, we adopted a parametric WCET
estimation method and proposed to parameterize it with condensed runtime model statistics
to compute WCET. We compared our approaches with two existing analysis tools, aiT and
OTAWA, and showed where we can tighten the results of the timing analysis. In particular,

this chapter showed our results for the third contribution group (Co3.1-Co3.4).

Publications related to this chapter. The timing analysis of graph query-based runtime
monitors was first included in the conference paper [c3]. This work is my contribution. The
static WCET analysis method is submitted to a journal and is now under review [j1]. The
concept of witness models and using them as means to estimate WCET is my contribution,
whereas the specificities of how to find witness models is the contribution of Krist6f Marussy.

Brett Meyer was helping the work as advisor and provided continuous feedback.

93

Part 111

Distributed Runtime Graph

Models and Queries

94

Distributed Runtime Models

We propose a distributed runtime graph model in this chapter to capture the operational state
and the context information of a smart CPS. While Chapter 5 focuses on suitable low-level
data structures for runtime models in resource-constrained environments, the objective of
the present chapter is to provide a runtime graph model management protocol for distributed
systems. Our key assumption is that creating a centralized global view about the entire system
is not realistic due to communication latency and the limited computing capacity available in
the platform components or because of privacy reasons, data collected by the devices should
not be directly sent to a cloud platform. Instead, we assume runtime model fragments are
maintained by computing units of the platform to capture their local knowledge base, and

only necessary changes are communicated between them.

Our work addresses decentralized mixed synchronous systems [Tei+94] where partici-
pants (1) communicate model updates to other participants in the first part of a time-triggered
execution loop [KG93] (update cycle) and (2) then evaluate queries over a consistent snapshot
of the system (query cycle). Later in Chapter 9, we focus on the query cycle while this chapter

provides a detailed description of the model update cycle.

This chapter is structured as follows. Section 8.1 shows a solution to create self-descriptive
models by incorporating execution platform information into a metamodel, and introduces
the concept of distributed runtime graph models. Then, Section 8.2 discusses the details of
our model management protocol that is designed to ensure consistency, i.e., it ensures that
any given point in time, no computing units can provide contradictory information about the
contents of the runtime model. Finally, in Section 8.4 we evaluate the performance of our
model management protocol on both real and virtual CPS platforms and highlight the key
findings.

95

8.1 Distributed Runtime Models

8.1 Distributed Runtime Models

We now introduce the changes necessary to a metamodel to allow capturing information about
the ownership (i.e., which computing unit has created it) of model objects, and we extend our

formal notation to support this aspect.

8.1.1 Metamodel Features for Distributed Runtime Models

As discussed earlier in Section 3.1.1, a metamodel captures the concepts of the domain with
their attributes, as well as possible relationships between them. In a distributed setting, we
assume that this runtime model is self-descriptive in the sense that it contains information
about the computation platform and the allocation of services to platform elements, which is
a key enabler for self-adaptive systems [Che+11; VG14]. For this reason, we propose specific

concepts that can be added to a metamodel to allow capturing this allocation aspect.

The changes are as follows: we introduce a new class named Participant with a unique
hostld attribute that is used to represent computing units in the platform. The name of this
class comes from the DDS standard, where each communicating entity is a participant. Fur-
thermore, each class in the domain should realize a new DomainElement interface. This in-
terface is introduced to avoid the addition of multiple references expressing the ownership
between the instance of a specific class in the domain and a participant. Instead, there is a
hostedObjects reference from Participant to DomainElement which is used to keep track of
which participant hosts which objects. Finally, lower bounds of reference multiplicities in the
metamodel are set to 0, while we allow the upper bounds to be 1 or unbounded. The example

below illustrates the described additions.

Example 20. Figure 8.1 shows all the elements of the initial metamodel for the MoDeS3
demonstrator presented in Figure 3.2a along with the proposed additions. Orange color

shows the additions and changes to the metamodel.

We also consider bidirectional associations by adopting the concept of opposite references
from EMF metamodels (eOpposites) where each reference type may have an opposite reference
type and vice versa (such as location and occupiedBy in Figure 8.1). EMF maintains such
pairs of opposite references consistently in case of (non-distributed) instance models, i.e., if
a reference is created or deleted, its opposite reference is created or deleted automatically.

However, maintaining such pairs of references is more complicated in a distributed setting,

96

8.1 Distributed Runtime Models

[0.7] participants [0.*] hostedObjects

[] Modes3ModelRoot] [{-| Participant] [8 DomainElement]

l o id: uint16_t J l:; hostld : uint16.t J [J
9 .
[0.X] trains 1[0.*] segments J/ \I/[O..*] connectedTo
,,,,,,,,,,,, L N
Train =] Segment
[5 [0..1] occupiedBy H Seg

= id : uint16_t = id : uint16_t
= speed : double = 0.0 [0..1] locatio

ZP‘ [0..1] straight [[0..1] divergent

£ Turnout

[0.X] turnouts

Figure 8.1: Extended MoDeS3 metamodel with platform information

as the objects that encapsulate the individual references might be hosted by two different
participants, and thus it is necessary to communicate the changes. To provide a solution for

this challenge, we propose a protocol in Section 8.2.2.

8.1.2 Distributed Runtime Graph Models

While a (regular) runtime model serves as a centralized knowledge base, this is not a realistic
assumption in a distributed setting where data is collected and stored locally by participants
in a decentralized manner. In our distributed runtime model, each participant only has up-to-
date but incomplete knowledge about the distributed system. Moreover, we assume that each
model object is exclusively managed by a single participant, referred to as the host (i.e., owner)
of that element, which serves as the single source of truth. This way, each participant can make
calculations based on its own view of the system (e.g., local evaluation of a query that reads
only the part of the model hosted on the participant is possible), and it is able to modify the
mutable properties of its hosted model elements. Any access, however, to an object hosted by

a different participant requires communication to respect the single source of truth principle.

To extend the formal treatment of models to distributed runtime models, we mark which
participant is responsible for storing the value of a particular predicate in its local knowledge
base. For a predicate ¢ with parameters vy, ..., v, [@(01, .. ., vn)]]Md"" @p denotes its value over

the distributed runtime model My;s;, stored by host p.

97

8.1 Distributed Runtime Models

Example 21. Figure 8.2 shows a snapshot of the distributed runtime model Mgy, for
the MoDeS3 system. Participants deployed to different physical computing units manage
different (disjoint) parts of the system. The diagram in Figure 8.2 presents the three par-
ticipants (P;—Ps, depicted by dashed rectangles) deployed to three computing units, the
domain elements (sy—sg, tug, tug, tro, tr, and try), as well as the links between them. Each
participant hosts model elements contained within them in the figure, e.g., P, is respon-
sible for storing attributes and outgoing references of objects s, s¢, and try. Formally, the

following expressions all evaluate to 1 (true):

[Train (trl)]]Md"“’@Pz, [Segment (so)]]Md"“’@Pz, [Segment (sﬁ)ﬂMdiSt’@Pz,
[Location(try, so)]]MdiSf’@Pz, [OccupiedBy (so, trl)]]Md"“'@Pz,
[ConnectedTo(ss, so)]]MdiSt’@Pz, [ConnectedTo sy, 56)]]Md“"@P2,

[ConnectedTo(ss, 55)]]M"i5f’@P2, and [ConnectedTo(sy, 51)]]M”““’@P2.

Figure 8.2: Distributed runtime model snapshot of MoDeS3

8.1.3 Distributed Model Update Operations

We assume that the following model manipulation operations are available for a distributed

runtime model (see also Section 3.1.2):

+ Object operations: In runtime models, objects can be created and deleted. Object update

operations are implemented by broadcast messages.

98

8.2 A Model Management Protocol for Distributed Runtime Models

« Attribute operations: Attribute values can be updated locally (i.e., no communication
is needed) in a distributed runtime model since the values of attributes are always stored
together with the object itself by the host participant.

« Reference operations: A link can be added or deleted between two objects. If both
ends of a link are hosted by the same participant then such a reference update is a local
operation (similar to an update of an attribute), otherwise it involves communication

with other participants in a peer to peer manner.

8.2 A Model Management Protocol for Distributed Run-
time Models

Next, a time-triggered protocol for distributed runtime model management operating over
a reliable communication middleware of the DDS standard is proposed. This protocol is de-
signed for CPSs where certain level of consistency is required, but can be adopted by other
platforms that can run DDS-compliant software (e.g., smartphone applications). In any case,
our discussion covers the design of the protocol to support distributed graph models, while

privacy concerns are out of scope for the current thesis.

8.2.1 Overview of Assumptions
Below we summarize our main assumptions and considerations.

Assumptions on sensing. We assume that each participant can detect relevant informa-
tion about its own model elements by local sensing, which triggers model updates to its local
knowledge base (together with a timestamp). The lifecycle of any model element can be at-
tached to sensor readings, i.e., a creation and deletion of a train object in the runtime model
depends on whether a particular sensor is able to detect the train in the real system. Such
sensor readings can be periodic (e.g., once in every 10 ms) or event-driven (e.g., when a new
train is detected). Raw sensor readings are buffered until the next model update cycle, while

the runtime model is updated in accordance with our protocol.

Assumptions on model updates. Conceptually, a participant may communicate relevant
model changes to other participants either asynchronously or periodically. However, all model
update requests are registered with a timestamp and buffered to be processed later in a time-

triggered way by our distributed model management protocol. The real processing order of

99

8.2 A Model Management Protocol for Distributed Runtime Models

model update messages will not be time-ordered, but our protocol tolerates lost/delayed mes-
sages and handles common semantic corner cases (see later in Section 8.3.1) by the end of
the model update cycle. As such, distributed graph query evaluation can return results from

a consistent runtime model of the system during the query cycle.

Assumptions on timeliness. We assume approximate synchrony [Des+15] between the
clocks of individual computing units, thus each participant can precisely detect the beginning
and the end of each cycle w.r.t each other. In other terms, the discrepancy between the clocks

of participants is negligible.

The time-triggered nature of our protocol provides an upper bound defined by the cycle
time of model updates (t,) and cycle time of query evaluation (t;). Thus, if no messages arrive
late, our runtime monitors will detect a relevant situation in at most 2 - (¢, + tq). However,
a detailed evaluation of timeliness guarantees is out of scope for the thesis and it is left for

future work.

Assumptions on communication middleware. In order to periodically communicate
model changes between participants, our distributed model update protocol relies upon DDS,

a standard reliable communication middleware to provide several important QoS guarantees.

1. Timely and reliable message delivery of model update messages is ensured by the DDS
middleware.

2. If there is a violation of QoS guarantees, DDS notifies participants to allow them to
recover from faults as part of the model update and query protocol. As such, the sender
of the message will be aware of such communication fault.

3. The synchrony of physical clocks of participants is enforced by a clock synchronization
protocol [Mar+04; SBK06], thus each participant receives messages with a timestamp
denoting when the update action was initiated.

4. Participants can save update messages to a preallocated buffer with potentially limited
size. This way, participants running under resource constraints will not be flooded by
an excessive number of messages sent over the network, and they are able to selectively

filter messages they want to keep based on their specific needs and preferences.

Assumptions on fault-tolerance guarantees. While DDS guarantees reliable message
delivery (i.e., a sent message will eventually arrive), it may not enforce that messages would

arrive within the timeframe of their phase. As such, our fault model considers messages that

100

8.2 A Model Management Protocol for Distributed Runtime Models

arrive outside the timeframe of their designated phase to be lost. Since DDS provides many
QoS guarantees for participants, our fault model used in the paper is restricted to message

loss or late arrival of a message.

Assumptions on properties of computing units. We assume that the computing units
are capable of running a program containing the implementation of the DDS standard. Based
on our initial assessment to be presented in Figure 8.4.2, this yields that the computing units
need to have at least 15 MB heap available to successfully initialize the middleware in our

case. Furthermore, we assume the devices can run the required TCP or UDP network stack.

8.2.2 A Multi-Phase Model Update Protocol

Time-triggered execution cycle. Our runtime monitoring approach is driven by a time-
triggered execution loop which can be divided into five major conceptual phases. The first four
phases constitute the model update protocol (discussed in this section) with (1) object create,
(2) object delete, (3) link update request, (4) link update reply. The update phase is followed
by a (5) query phase (discussed in Chapter 9).

Our model update protocol will be defined by complex statecharts containing multiple
parallel regions. In this paper, we used YAKINDU Statechart Tools! for the specification and

simulation of the protocol.

Figure 8.3 shows a statechart model describing this execution cycle. Transitions are trig-
gered by events coming from a master clock that is available to all participants, which is

implemented using high precision clock synchronization across platform components.

Sensing. A statechart describing the behavior of the sensing services capable of detecting
objects is displayed in Figure 8.4. The transitions are triggered by the events sensing.appear
and sensing.disappear assumed to be raised by changes in the operational context of the sys-
tem. When those transitions fire, the sensing.objectAppeared and sensing.objectDisappeared
flags are set/cleared according to the events, allowing local buffering of events. These flags are
cleared at the beginning of each object create cycle. Figure 8.4 only depicts the sensing model
for objects, but an identical model employing a different pair of flags can be used to model the

appearance/disappearance of links between two selected objects.

!https://www.itemis.com/en/yakindu-tools

101

8.2 A Model Management Protocol for Distributed Runtime Models

timer.tick / Query
. ® raise timer.objCreateStart

raise

tlmer.obJCreateStari l

timer.tick /
Create raise timer.queryStart
ReferenceReply
timer.tick /

raise timer.objDeleteStart

timer.tick /
raise timer.refReplyStart

Delete ReferenceRequest

»
ot

timer.tick / raise timer.refRequestStart

Figure 8.3: Runtime phases of model updates and queries (statechart phases)

; timer.objCreateStart /
e ldle sensing.objectAppeared = false;

—— sensing.objectDisappeared= false

A

»
|

sensing.appear 4 |[sensing.disappear
timer.objCreateStart /
sensing.objectAppeared = true; timer.objCreateStart /
sensing.objectDisappeared= false sensing.objectAppeared = false;
sensing.objectDisappeared = true
ObjectAppear ObjectDisappear

sensing.disappear _ .
timer.objCreateStart /

sensing.objectAppeared = false;
sensing.objectDisappeared= false

DisappearAfterAppear

Figure 8.4: High-level model of object sensing services local to a participant (statechart sensing)

Overview of messaging for model updates. In our distributed model update protocol,
object creation and deletion are communicated as broadcast messages so that participants can
register the existence of all objects. Such broadcast messages allow each participant to add or

remove links to any model object, as well as to query object attribute values or links, even if

102

8.2 A Model Management Protocol for Distributed Runtime Models

Table 8.1: Summary of actions when receiving object update messages

Object update message

Condition [[C(obj)]]M"”“’@p =1 (obj created at p) [[C(obj)}]Md"‘"@p = 0 (obj deleted at p)
obj is unknown create proxy object obj create proxy for obj and mark it as deleted
obj is present locally no-op mark proxy for obj as deleted

an object is not hosted by the participant. On the other hand, messages for link addition and
removal are sent in a peer to peer manner. The precise protocol of sending and receiving such
message will be defined by a series of statecharts, which control the model update behavior

individually for each model element.

8.2.3 Object Create Phase

The first phase of the model update cycle addresses object creation. A participant that creates
a new object must send a broadcast message with the identifier ocyeqse, the type C, and its
participant identifier pp,s;. Formally, the message has [[C(ocreate)]]Md"s”@phost = 1 as content.
It is necessary to notify other participants about the creation of a new object in order to
allow them to create links pointing to the object (i.e., as a target end of an edge). Recipient
participants will create a proxy object locally that represents the remote object in the model
by having the same type C, but stores the object identifier o.reqre and the host participant
identifier py,s; as its only attributes. The middle column of Table 8.1 summarizes the actions

a participant takes upon receiving an object create message.

The statechart in Figure 8.5 specifies the lifecycle of an object while a parallel region (de-
picted separately in Figure 8.6) shows the ownership of the object.

Statechart of object creation. The initial state for an object is NoObject (Figure 8.5) that
represents when the object does not exist in the model, while its ownership is initially None
(Figure 8.6). From this initial state, creation is triggered when the participant either (1) receives
a data.create message or when (2) sensing signals sensing.objectAppeared at the beginning

of the object creation phase triggered by a timer.objCreateStart event.

« In the first case, the corresponding (broadcast) message arrives in the object create
phase. A proxy object is registered and enters the Created state, while ownership is

set to Proxy after raising event ownership.releaseObject.

103

8.2 A Model Management Protocol for Distributed Runtime Models

data.delete
[active(phases.Delete)] /
raise owner.releaseObject

NoObject
data.create

[active(phases.Create)] /
raise owner.releaseObject

timer.objCreateStart
[active(data_ownership.None) &&
sensing.objectAppeared] /

raise data.create : PARTICIPANT_ID

Creation

i timer.objDeleteStart
o— ServingCreate [fault.isCreateMsgLost]

timer.objDeleteStart A
['fault.isCreateMsgLost] /
raise owner.hostObject

timer.objCreateStart

[active (data_ownership.None) && v
Isensing.objectDisappeared] /

raise data.create : PARTICIPANT_ID CreateMsgLost

timer.objDeleteStart

[sensing.objectDisappeared] /
data.delete / raise data.delete : PARTICIPANT_ID
[active(phases.Delete)] Created

A

timer.objDeleteStart

[active (data_ownership.Local)

&& sensing.objectDisappeared] /
raise data.delete : PARTICIPANT_ID

Deletion

RR—— timer.refRequestStart
ervingDelete fault.isDeleteMsgLost
o [glost]

timer.refRequestStart

['fault.isDeleteMsgLost] timer.objDeleteStart
[active(data_ownership.Local)] /
raise data.delete : PARTICIPANT_ID

———— " Deleted DeleteMsgLost

>
>

Figure 8.5: States of an object in our model update protocol (statechart object_consistency)

104

8.2 A Model Management Protocol for Distributed Runtime Models

!

None

owner.releaseObject owner.hostObject

e

Proxy Local

Figure 8.6: Object ownership states (statechart data_ownership)

« In the second case, local sensing services indicate that an object needs to be created
locally by setting the sensing.objectAppeared flag and this flag is read at the start of the
object create phase indicated by the timer.objCreateStart event. Then, a broadcast mes-
sage is sent on the creation of a new object and the object is moved to the ServingCreate
state. By the time the next phase starts (which is indicated by a timer.objDeleteStart
event raised by the master clock), if no lost messages are reported, i.e., the broadcast
message was successfully delivered to all other participants, the object enters the Cre-

ated state, while the ownership is set to Local.

8.2.4 Object Delete Phase

In the second phase of model updates, objects of the runtime model can be deleted. The phase is
similar to object creation: the identifier 04ejes, the type C, and the host pp,s of the deleted object
is sent in a broadcast message. Formally, [[C(odelete)]]Mdis"@phost = 0 is sent, which is also saved
in the local knowledge base. It is necessary to notify other participants about the deletion of an
existing model element to allow them to remove potential dangling edges originally pointing
to the deleted object. Only the host participant of the object can initiate the deletion of the
corresponding object, otherwise the object deletion message is ignored. Deleting an object is
irreversible, i.e., once an object is deleted, it cannot be reverted. The last column of Table 8.1

summarizes the actions to be taken upon receiving a delete object message.

Statechart of object deletion. Deletion of an object that is in the Created state (Figure 8.5)
depends on the ownership of the object (Figure 8.6).

« A hosted object (i.e., ownership.Local is active) is deleted by first entering the Serv-

ingDeleted state and sending a broadcast message to all participants in the system about

105

8.2 A Model Management Protocol for Distributed Runtime Models

the deletion. Then, if all participants have been successfully notified about the deletion
of the object (i.e., fault.isDeleteMsgLost is false) at the end of the object delete phase,
the object goes to Deleted state.

« A proxy object (i.e., ownership.Proxy is active, thus owned by another participant) is
immediately brought to Deleted state upon receiving a data.delete event in the object

delete phase.

Furthermore, if a participant receives a data.delete for an object that is not known, i.e.,
while the object is in the initial state NoObject, it transitions to the Deleted state to ensure
that participants have a synchronized knowledge on the state of model objects. It must be
noted that an object in the Deleted state is never included in any match during the query

phase.

8.2.5 Link Update Request Phase

In this third phase of the model update protocol, link additions and removals are initiated (in
arbitrary order) between objects. Unlike the case of object update, where broadcast messages
are used to notify each participant, link updates are communicated in a peer to peer manner
between participants that are the hosts of the two objects at the ends of the link being updated.
Other participants, as they are not storing any information about links between objects they

are not hosting, are not notified.

Link creation. Adding a link from object 0. to 04, is done without sending any messages
if either (i) both objects are hosted by the same participant py,; or (ii) their hosts are different,

but the structural consistency checks can be done locally by the host of og.

Otherwise, link addition from object oy, to 044 is initiated by the host of oy, (denoted

as pg.). Formally, a message is sent with [R(0g, otrg)]]Mdis”

@pse = 1 as content. To main-
tain a consistent model, the local knowledge base keeps the [R(0g, otrg)]]Md“” @psre = 0 entry
until receiving an acknowledgement message from the host of the target object containing
IR (0sre, otrg)]]Mdis" @pug = 1in the subsequent link update reply phase. However, if the link
cannot be added for some reason, e.g., a multiplicity constraint would be violated, the reply
from p;., will be [R (0, otrg)]]Mdi“’ @pirg = 0. From this information the host of o, will also

deduce that the link cannot be set, thus a consistent truth value is maintained by both parties.

Statechart of link creation. Figure 8.7 shows the possible states of a link, while a partic-

ipant’s role is modeled separately in Figure 8.8. The respective initial states are NoLink and

106

8.2 A Model Management Protocol for Distributed Runtime Models

Server. Similarly to object creation, adding a link can start at a participant after (1) receiving
a data.addRequest while in the reference request phase or when (2) the local sensing services

signal sensing.linkAppeared at the beginning of the reference request phase indicated by the
timer.refRequestStart event.

Addition
data.addRequest data.addRequest
: [active(phases.ReferenceRequest)] [active(role.Requester) &&
NoLink 3 |sOtherT|mestampH1gher] /
> |
timer.refRequestStart | AddRequest raise roleserve
S N [sensing.linkAppeared] / timer.refReplyStart
raise dalta.addRequest; [failure.isAddRequestMsgLost]
raise role.request
timer.refReplyStart 1
imer.refRepl [active(role.Server) &&
t[;r:te:i;ree(rofep?sygt/ae:t) && ffailure.isMultiplictyViolated] /
failure.isMultiplictyViolated] / | "2!s€ data.addReplyAck
raise data.addReplyReject timer.refReplyStart
[active(role.Requester)] timer.refRequestStart
data.addReplyReject [active(role.Requester)] [active(role.Requester)] /
v raise data.addRequest
timer.queryStart AddReply AddMessageLost
['failure.isAddReplyMsgLost] & <

>

timer.queryStart
T [failure.isAddReplyMsgLost]

| timer.refRequestStart
[active(role.Server)] /
raise data.addReplyAck

Removal
t timer.refReplyStart
['failure.isRemoveMsgLost]
RemoveRequested d
ata.remove
d [active(phases.ReferenceRequest)]
ata.remove
[active(phases.ReferenceRequest)]
v
. . timer.refReplyStart
Lilom il T [failure.isRemoveMsgLost]

timer.refRequestStart
[sensing.linkDisappeared] /

raise data.remove RemoveMessageLost

timer.refRequestStart .

[sensing.linkAppeared] timer.refRequestStart
['sensing.linkAppeared] /
raise data.remove

Figure 8.7: States of a reference in our model update protocol (statechart link_consistency)

107

8.2 A Model Management Protocol for Distributed Runtime Models

.

Server =

role.serve

Requester

role.request
timer.queryStart

[active(link_consistency.NoLink) ||
active (link_consistency.LinkExists)]

Figure 8.8: Participant roles during reference update (statechart role)

« In case (1), the participant is serving the reference add request, so that it stays in the
Server state, while the link transitions from NoLink to AddRequest. Then, at the start
of the reference reply phase, it sends back an acknowledgement to the requester and
enters the AddReply state. Upon successful delivery of the reply message, the reference
is created and it enters the LinkExist state. While in AddRequest, if the new reference
would violate a multiplicity constraint, a reject is sent back to the requester and the link
is not created, its next state is NoLink.

« In case (2), the participant takes the Requester role and the reference moves to the Ad-
dRequest state. Once the request is successfully delivered, the reference’s state changes
to AddReply where it is waiting for the reply message. Once acknowledged, the link is
added and it enters the LinkExist state.

Link removal. The removal of a directed link leading from object o to 04 is similarly
done without sending any messages if either (i) both objects are hosted by the same participant
Phost or (ii) they are hosted by different participants, but structural consistency can be ensured

locally by the host of og..

Otherwise, removing a link can be initiated by participant ps., the host of the source object
0 by sending a request to participant p,, hosting the target object o4,. Formally, to initiate

My;
S @psre = 0.
Reference removal requests will not have corresponding reply messages, because we assumed

removing a reference of type R, the content of the messages is [R(0src, Otrg)]

lower multiplicity bounds for references to be 0, thus such requests would always be acknowl-

edged.

Statechart of link removal. Table 8.2 briefly summarizes the actions to be taken upon
receiving reference update request messages, while the right part of Figure 8.7 shows the states
related to the removal of an existing reference. Similarly to deleting an object, the removal of a

reference that is in the state LinkExist can be triggered in two ways: either receiving a message

108

8.3 Fault Tolerance and Consistency

Table 8.2: Summary of actions for link update request messages

Reference update request message

Condition [R(sre, trg) ™" @p = 1 (p requests addition) [R(src, trg)]**"@p = 0 (p requests removal)
link exists no-op delete opposite link

if multiplicity constraints hold,
link does not exist add opposite and send acknowledgement, no-op

otherwise send reject to request

in the reference request phase initiating the removal, or via the local sensors. In the former
case there is no extra condition, the link simply goes to state NoLink. If the removal is triggered
by reading sensing.linkDisappeared = true at the beginning of the reference request phase,
the reference enters the RemoveRequested state. Once the target participant is delivered the

remove message, the link goes to NoLink.

8.2.6 Link Update Reply Phase

The only special attention is needed for handling the addition of inverse links (which need
to be updated simultaneously) with [0..1] multiplicities due to the potential race condition
between participants. In such a case, the target object of a link update request may reject the
corresponding add request to ensure structural consistency, i.e., to respect the upper multi-
plicity bound. Thus, when a link with an opposite is to be added, the host of the target object
needs to acknowledge the operation for the host of the source object in a subsequent link

update reply phase.

« In case of success, both parties are consistently notified about the change by replying
IR (0sre, otrg)]]Md"s” @pug = 1, thus the opposite references can be set automatically at
both participants without sending extra messages over the network.

« If a structural inconsistency is detected at the target object, the reference add request is

rejected by sending [R (0, otrg)]]Mdis”@ptrg =0.

8.3 Fault Tolerance and Consistency

8.3.1 Fault Tolerance to Handle Message Loss

As model update messages sent by a participant might get delayed, thus a message will even-

tually arrive but possibly after its deadline (outside the respective phase). These cases are

109

8.3 Fault Tolerance and Consistency

always detectable by the sender of the message, and our protocol conceptually handles such

latecoming messages as message loss (i.e., the message is lost within the given cycle).

Message loss during object update. Nevertheless, our object update protocol can recover
from faults eventually caused by message loss thanks to extra states introduced in Figure 8.5.
For object create, if at least one message was not delivered while in ServingCreate state, fault.is-
CreateMsglost is set to true based on notifications coming from the communication mid-
dleware. Then, the object enters the CreateMsgLost state and the broadcast message at the
beginning of the next object create phase is repeated. This loop is iterated until eventually

everyone is notified about the existence of the object.

Furthermore, the protocol is able to handle cases when a sensor reports that the object un-
der creation should be immediately deleted (the sensing.objectDisappeared flag is set) while
recovering from lost creation messages. When this happens, object enters the Deletion com-

posite state and the deletion procedure will begin in the object delete phase.

Likewise, upon deleting an object, the DeleteMsgLost state is entered (from state Serv-
ingDelete) if the middleware detects issues with delivering the messages by the end of the
object delete cycle. At the beginning of the object delete phase, the object returns to Serv-
ingDelete and the deletion broadcast messages are retransmitted. Again, this loop is iterated

until eventually each remote participant is notified about the deletion.

Message loss for reference updates. Similarly to object update, our reference update pro-
tocol is prepared to tolerate message loss to avoid inconsistencies thanks to the extra states
AddMessagelost and RemoveMessageLost introduced for fault tolerance purposes. When ref-
erence addition is requested (i.e., while having the role Server), the AddMessageLost is reached
if the request message is lost. Then, at the beginning of the next reference request phase, the
data.addRequest is resent and the state AddRequest is entered. If a reply message is lost as a
server during a reference add, the same AddMessagelost is reached, but the reference in this
case will return to the state AddReply, and will retransmit the previously lost answer (either

data.addReplyAck or data.addReplyReject).

Tolerating a message loss in case of a reference remove request is a simpler task compared
to reference add because a remove request that is sent when transitioning from LinkExist
to RemoveRequested does not need to be acknowledged. Once such a message is delivered,
the edge can be safely removed but until that the requester is looping between RemoveMes-

sagelLost and RemoveRequested states.

110

8.3 Fault Tolerance and Consistency

8.3.2 Semantic Aspects of Consistency

While providing a formal proof of consistency for our distributed model update protocol is
outside the scope of this thesis, we highlight some aspects and corner cases which need to be

tackled to establish desirable semantic properties like consistency or termination.

Termination. Our protocol avoids deadlocks (i.e., two participants are mutually waiting
for each other) and livelocks (when they are continuously sending messages to each other).
Deadlock avoidance is achieved by (1) restricting each cycle to messages of a particular type
and (2) using a time-triggered execution which continuously progresses to the next phase re-
gardless of the arrival of messages. Livelocks are avoided by ensuring that a bounded number

of messages (requests and replies for each model element) are sent in each phase.

Local consistency w.r.t sensor readings. By local consistency, we mean that durable lo-
cal events detected by sensors attached to a model element will eventually be reflected in the
(local) runtime model of the participant. Since each sensor reading is recorded as a local event
with a timestamp, causality of such sensing events (e.g., an object appearance or disappear-
ance is observed by the owner participant) are easily established in the update cycle (e.g., a
corresponding object is created or deleted in the runtime model), but events detected in cycle
t are reflected in the runtime model in cycle t + 1. This gives a guarantee that the owner of
a model element can make a decision based exclusively on the runtime model within at most

two cycle periods 2 - T.

Global query consistency of runtime model. By global consistency of the (distributed)
runtime model, we mean that by the time the query cycle starts, each participant has updated
its own hosted model elements, and synchronized the changes with the rest of the platform
participants. As such, a query initiated by two different participants will always provide the

same result set within the query cycle.

The assumed single source of truth principle (i.e., each model element has a unique owner)
ensures that no contradictory updates will ever be communicated. But in case of message loss
during model update phase, some participants may have outdated information about some
model elements. Nevertheless, the communication middleware notifies the owner of the model
element about any lost messages, thus a query accessing such a model element will still use
the previous (consistent) state of the object, and the new state will be reflected when all par-

ticipants are successfully notified (see below).

111

8.3 Fault Tolerance and Consistency

A potential race condition may occur when two participants attempt to add a reference
between a pair of objects, but this reference also has an inverse reference with at most one
multiplicity, thus only one of the reference add operations can succeed. For a consistent model
update, the one with the later timestamp should be enforced by introducing a self-loop tran-
sition in state AddRequest (of the link_consistency statechart) and one participant will act as
a server while the other will act as a requester. Furthermore, we assume that by choosing the

later timestamp to resolve such conflicts, the most recent change is reflected in the model.

This race condition is a consequence of the provided model manipulation interface, as it
allows the host participant to initiate the update of any references that is an outgoing reference
of a hosted object. An alternative solution to this race condition would be to change this
interface and remove the possibility of setting certain references directly, and thus provide a

similar asymmetric behavior as in EMF [Ste+08].

Eventual update consistency in case of message loss. While global query consistency
prevents reading contradicting information in case of a message loss, such message loss may
still delay the effects of a particular model update. In this case, according to our assumption on
the communication middleware, notification is provided to the sender participant about the
failure of delivering the message. This way the owner of a model element can prevent incon-
sistencies by tracking the last state surely known to all other participants as the consistent
information, and will repeatedly re-send the message containing the change. For example,
if some participants are not yet notified about the creation of an object then the object is
considered to be non-existing (i.e., it is in the CreateMsgLost state of the object_consistency
statechart). This way, update consistency is eventually achieved when the update is successfully
communicated to all recipients. Therefore, all updates that require communication between
participants will eventually take effect unless there is a more recent action which overrides

its effect.

In our protocol, consistency takes precedence over availability of data in the runtime
model. This means that lost messages can delay the update of the local knowledge base of
a participant and thus delay the appearance of a match of a monitor. Similarly, if a participant
in the platform becomes unavailable, and thus becomes unresponsive to messages, it can de-
lay the appliation of updates to the runtime model until it becomes fully functional again. For
this reason, systems sensitive to delays or have unreliable platform components can opt for
a solution which aggressively updates the runtime model, but provides less strict consistency

guarantees.

112

8.4 Evaluation

8.4 Evaluation

We conducted measurements to evaluate the scalability of our distributed runtime model to

address the following research questions:

RQ1 How does the throughput of update operations change with increasing size of models?

RQ2 How does the distributed model update technique scale w.r.t the number of participants?

8.4.1 Measurement Setup

We carried out experiments on two different platforms to increase the representativeness of

our measurements.

Real CPS platform. We use the real distributed (physical) platform of the CPS demonstra-
tor which consists of 6 interconnected BeagleBone Black (BBB) devices (all running embedded
Debian Jessie with PREEMPT-RT patch) connected to the railway track itself. This arrange-
ment represents a distributed CPS with several computing units having only limited compu-
tation and communication resources. We use these units to maintain the distributed runtime
model, and evaluate monitoring queries. This way we are able to provide a realistic evaluation,
however, we cannot evaluate the scalability of the approach w.r.t the number of computing

units due to the fixed number of devices in the platform.

Virtual CPS platform. To evaluate scalability w.r.t increasing number of participants, we
deploy our framework over a virtual platform with Docker containers. This way, we can in-
crease both the model size and dynamically add new participants. The containers are running
Ubuntu Linux 18.04 LTS and they are all deployed to the same server machine with 32 cores
and 240GB memory. A dedicated Docker network is created and assigned to the containers

allowing them to communicate over a virtual local area network.

DDS middleware. We use a commercial DDS implementation provided by RTI? which sup-
ports the QoS settings included in the DDS specification. Furthermore, RTI provides addi-
tional options to fine-tune applications. We make minor modifications to the initial profile
provided in high_throughput.xml to ensure timely message delivery. Namely, we increase the
max_samples for the data writer to allow increased write throughput. Furthermore, we set the

max_flush_delay to 100 ms to ensure periodic sending of buffered messages, and increased

https://www.rti.com/products/dds-standard

113

https://www.rti.com/products/dds-standard

8.4 Evaluation

-

S 420 4200 42000 420000

S 400 4000 - 40000 - 4e+05 -

+2 3001 3000 - 30000 - 3e+05 4

22004 2000 - 20000 - 2e+05 4

3 100 1000 - 10000 - Te+05 -

-B O B T T T T 0 - T T T T 0 - T T T T Oe+00 B T T T

T 00 02 04 06 0 2 4 6 0 20 40 60 0 200 400 600
p= Elapsed time (s)

Figure 8.9: Number of model objects registered by a single participant

themax_send_window_size to allow larger batches of transport messages. These two param-

eters are both RTI’s own extensions to the standard.

8.4.2 Benchmark Results on Real CPS Platform

Assessment of execution time. In the first set of experiments, we assessed how the model
update throughput is affected by the size of the runtime model. Each BBB was running a sin-
gle participant, while each participant was sending 70, 700, 7000 and 70000 broadcast update

messages, while also listening to model updates sent by other participants.

Figure 8.9 shows our results. Each line represents a separate scenario where 420, 4.2k, 42k,
and 420k objects in total were created by the participants, respectively. Furthermore, lines
in the plot depict the median of how many objects a single participant registered over time

during the experiment (both local and remote objects).

Assessment of memory footprint. We measured the heap memory consumption of our
prototype maintaining a runtime model on a single BBB unit. As a baseline, we measured
the total memory consumption (2nd column in Table 8.3) including memory allocated for the
required DDS data structures without creating any model objects. Then, we created 420, ...,
420k model objects with their references, and checked the total memory consumption (3rd
column in Table 8.3). Based on this, we calculated the average memory consumption of an
object (4th column in Table 8.3).

Findings for RQ1. Figure 8.9 implies that the throughput of model updates is not affected
by the actual size of the model or the number of participants. The average throughput measure
is processing 797 object updates per second. Additionally, the results also point out that our

approach scales up to 420k model objects hosted across 6 participants.

114

8.4 Evaluation

Table 8.3: Memory footprints observed in the prototype implementation

Model objects Total memory Model size Avg. object footprint

420 14.77 MB 0.59 MB 1404.76B
4,200 15.89 MB 1.71 MB 407.14 B
42,000 27.76 MB 13.58 MB 323.33B
420,000 146.50 MB 132.32 MB 315.05B

Concerning the memory use of a single runtime model object (approx. 300-400 bytes for
models with more than 4k objects), we consider our runtime model to be lightweight, which

is very promising in terms of scalability w.r.t model size.

The evaluation results show that object update time does not depend on the size of the
entire model, which is a key property for scalability, while the average memory footprint

per model object decreases as the size of the model increases.

Limitation. The loaded libraries and initial DDS data structures (mainly DDS topics) in our
setup prevents our prototype to be deployed on devices with less than 15 MB memory. Note
that only around 3 MB of memory is dedicated to message buffers introduced by our middle-
ware configuration (i.e., to send batch messages to increase throughput), the rest of memory
consumption would be noticed for any DDS-based implementation using the same (industrial)
library. The measured memory usage is in accordance with the memory benchmark results
provided by RTP.

In fact, there is a newer standard called DDS-XRCE [Obj19] dedicated to support devices
with very limited available memory. This standard is an extension of the initial DDS spec-
ification designed to support resource-constrained environments and could provide a much
lower runtime overhead. However, by the time of performing the experiments included in this

thesis, no implementation was available to us for evaluation.

8.4.3 Benchmark Results on a Virtual CPS Platform

We used the virtual CPS platform to allow the scalability assessment of the model update pro-
tocol w.r.t the number of participants in the platform. In this set of experiments, we assessed

how the model update throughput is affected by the number of participants present in the

Shttps://www.rti.com/products/benchmarks

115

https://www.rti.com/products/benchmarks

8.4 Evaluation

)
§ 2 participants 5 participants 10 participants 20 participants
8 1.0e+05 2.5e+05 5e+05 A 1.0e+06
+ 7.5e+04 %-gﬁgg T ;‘“82 T 7.5e+05+
o i .5e+05 1 e+05 - i

35.06+04 1.06405 - 26405 - 5.0e+05
O 2.5e+04 1 5.0e+04 - 1e+05 2.5e+05

I 0, : : 0.0e+00~-— 1 0e+001—, — J0.0e+001 - |

—8 00 02 04 0.00 0.50 1.00 0005101520 0o 1 2 3

p= Elapsed time (s)

Figure 8.10: Registered objects over time by a single participant (median is shown)

system. Each participant was sending the same amount of broadcast update messages (each
creating almost 50K new model objects), while also listening to model updates sent by other

participants.

Findings for RQ2. Figure 8.10 shows our results. Each line represents a separate scenario
where 2, 5, 10, and 20 participants were active, respectively. Furthermore, lines in the plot de-
pict the median of how many objects a single participant registered over time during the ex-
periment (both local and remote objects). This suggests that the throughput of model updates
is unaffected both by the actual size of the model and the number of participants. Additionally,
the results also point out that our approach scales up to 1M model objects hosted across 20
participants. Note that the charts in Figure 8.10 show the number of objects observed by a
single participant over time, thus depending on the message dissemination provided by the
underlying middleware, the arrival rate of object update messages may change, as observed

in the case of 5 and 10 participants about 0.7 seconds after the start of the measurements.

We also assessed throughput for different model update types. Figure 8.11 shows the re-
sults for measuring the capability of a single participant to process various model update
messages over the first 1 second of the benchmark with 10 participants. On average, 1708 ob-
jects are registered every 10 ms, while this value is only 286 and 462 for processed reference
update requests and replies, respectively, which are promising performance indicators for a

software prototype.

The distributed runtime model management protocol is able to support up to 20 partici-

pants in a virtual platform with a throughput of 250k object updates per second.

116

8.5 Summary

o0
= 2000+
B Update type
§§'§ 15007 Object update
qQ_)- %0%1000 . Reference reply
o @ Reference request
&S E 500
N
8 T T T T
> 0.00 0.25 0.50 0.75

Time (s)

Figure 8.11: Throughput processing comparison by different model update messages on a single par-
ticipant

8.4.4 Threats to Validity

Construct validity. In our assessment, we did not use fault injection to enforce message
losses in order to investigate the fault tolerance capabilities of our protocol. Furthermore, up-
date operations dealing with object deletion and reference removal in our protocol are more
simple than the ones with object creation and reference addition. In our evaluations, we fo-

cussed on the latter two which represent the more complicated cases.

Internal validity. To measure the performance of our distributed model management ap-
proach, participants executed only model management tasks, thus other external factors can
be excluded. In Section 8.4.3, we ran Linux containers on a remote server located in a cloud
infrastructure. As such, we had very limited influence on the allocation of the machines and
the potential workload that is present on the same physical host as our instances. As such, a

non-cloud-based setup may yield different run times.

External validity. The generalizability of our experimental results is limited by the fact
that our experiments were carried out on isolated local area networks, where the network

latency is (most likely) significantly lower than on real networks with additional traffic.

8.5 Summary

In this chapter, we introduced a distributed runtime model management protocol for CPS.
The presented protocol ensures that queries initiated by any participant in the system pro-
vide consistent results even in case of message loss during a model update. We implemented

the proposed protocol on top of a cutting edge commercial DDS library, and evaluated the

117

8.5 Summary

scalability of the approach. The evaluation was performed on both a real and virtual CPS
platforms, and the results showed that the approach is able to scale up to 20 participants
and 1M model objects, which are promising results for our software prototype. This chap-
ter introduced the results related to the first contribution group (Co1.2, Co1.3, and Co1.4) for

distributed resource-constraint CPS platforms.

Publications related to this chapter. The distributed runtime model management proto-
col is presented in the journal article [j2]. The development of the protocol is a joint effort by
my supervisor and myself. The implementation of the software prototype and evaluation of
the approach on the real CPS platform is in part the contribution of Gabor Szilagyi. I have per-
formed the evaluation on the virtual platform. Andras Voros was helping the work as advisor

and provided continuous feedback.

118

Distributed Graph Queries

This chapter extends query-based runtime monitors introduced in Chapter 6 to distributed
systems. To evaluate graph queries of runtime monitors in a distributed setting, we propose
to deploy queries to the platform in a way that is compliant with the distributed runtime
model and the potential resource restrictions of computation units. If a graph query engine
is deployed as a service on a computing unit, it can serve as a local monitor over the runtime
model. However, such local monitors are usable only when all graph nodes traversed and re-
trieved during query evaluation are deployed on the same computing unit, which is generally
not the case. Therefore, while the local evaluation of queries is still preferable for performance
reasons, a distributed monitor needs to gather information from other model fragments and

monitors stored at different computing units.

In this chapter, we present an approach for evaluating distributed queries. Section 9.1 dis-
cusses search-based query evaluation strategies. Then, in Section 9.2 we show in detail an
adaptation of the evaluation algorithm presented in Algorithm 3.2.1, and discuss how 3-valued
logic can be used to represent uncertain matches caused by message losses during query evalu-
ation. Finally, in Section 9.3 we evaluate the proposed approach using the MoDeS3 demonstra-

tor and the Train Benchmark [Sza+17] query benchmark framework and discuss our findings.

9.1 Strategies for Distributed Runtime Monitoring

As in Chapter 6, we rely on graph queries to capture the monitored properties. This declar-
ative description allows to capture safety properties on a high level of abstraction over the
distributed runtime model, which eases the definition and comprehension of safety monitors

for engineers and avoids accidental complexity caused by additional platform-specific or de-

119

9.1 Strategies for Distributed Runtime Monitoring

closeTrains(s, €) NEG:s =e
t: Train ot : Train
pattern closeTrains(s, e) {
Train.location(_t, s);
Segment .connectedTo(s, m); location occupiedBy
Segment . connectedTo(m, e); Y
. A ———— ———— R ———
Segment.occupiedBy(e, _ot); connectedTo connectedTo
s I=¢e
} s : Segment m : Segment e : Segment
(a) Query closeTrains captured in VQL (b) Graphical query presentation

@cr(s,e) = 3t : Train(#) A Location(#,s) A 3m : ConnectedTo (s,m) A ConnectedTo(m,e) A —=(s =e) A Jot : OccupiedBy (e, ot)

(c) Graph query as logic predicate

Figure 9.1: Monitoring goal formulated as a graph query ¢cr for closeTrains

ployment details. The synthesized distributed monitoring programs exploit the knowledge
about the ownership of data and ensure that matches of queries are collected from the entire

runtime model rather than just the locally available model fragment.

Example 22. In the railway domain, safety standards prescribe a minimum distance
between trains on track [Abr+08; Eme11]. The closeTrains monitor definition captures a
(simplified) description of the minimum headway distance to identify violating situations
where trains have only limited space between each other. Technically, one needs to detect
if there are two trains on two different segments of the track, which are connected by a
third segment. Any match of this pattern highlights track elements where passing trains
need to be stopped immediately. Figure 9.1a shows the monitoring query closeTrains in
textual VQL syntax, Figure 9.1b shows a graphical presentation, and Figure 9.1c displays

the definition as a graph formula ¢cr-.

Our system-level runtime monitoring framework is hierarchical and distributed. Monitors
may observe the local runtime model of a participant, and they can collect information from
runtime models of different participants. Moreover, one monitor may request information

from other monitors, thus yielding a hierarchical network.

Similarly to evaluating queries on a single device, monitors compute matches of a graph
query ¢(vy,...,0,) along a search plan by assigning model objects to variables vy, ..., v, and
evaluating the predicate of the query. A search plan is an ordered list of search operations

(e.g. checking type of objects, navigating along references) that traverses the runtime graph

120

9.2 Distributed Evaluation of Graph Queries

model in order to find all complete variable bindings satisfying the query condition. The search
plan for ¢(vy, .. .,v,) also depends on the initial binding information for the input parameters

(provided by the caller) as a variable with a fixed value can greatly reduce the search space.

In distributed query-based monitoring, a significant challenge in executing search plans
is to manage navigation along references and reading an attribute values of objects hosted
by other participants. Additionally, we wish to allow that monitors initiated by an arbitrary
participant can return all violations in the entire system. We have identified two possible

approaches to support these requirements:

« Single executor: a single participant executes all steps of the search plan while access-
ing information stored at other participants, which can be achieved by a synchronous
remote procedure call implementation over DDS. The request message conveys (i) what
reference/attribute value of (ii) what object is requested and (iii) by which participant,
while the reply message encapsulates the (i) object identifier and (ii) an array of values.

« Multiple executors: the participant which initiates the execution of a monitor will
not directly request information from other participants. Instead, if a remote object is
encountered and its reference/attribute value is queried, the partial variable bindings
are asynchronously passed to the other participant, which continues the execution of
the search plan. The request message needs to contain (i) an auto-generated unique
request identifier, (ii) the partial variable binding, (iii) the next step in the search plan
and (iv) the requester participant ID (i.e., the hostld attribute in Figure 8.1). Once the
other participant receives this message, it continues the matching and finally, it returns
all found matches to the requester in a reply message with (i) the set of matches and (ii)

the request identifier.

As we have shown it in one of our former papers [c4], the multiple executors strategy
turned out to be far superior to the single executor one. For this reason, in this thesis we are

only using the multiple executors strategy when evaluating distributed queries.

9.2 Distributed Evaluation of Graph Queries

Query execution is the last step of our proposed time-triggered execution loop in Section 8.2.2.
During this time, the underlying distributed runtime model is assumed to be fixed, i.e., queries

are executing over a snapshot of the system.

121

9.2 Distributed Evaluation of Graph Queries

9.2.1 A Query Cycle

Monitoring queries are evaluated during the so-called query cycle. We assume that the search
plan for each monitoring query has been made available to all participants prior to this query
cycle phase to support query evaluation at any participant. During query evaluation, each

participant uses this same search plan.

When participants compute matches in a distributed way, they simultaneously evaluate
predicates of the query on the values of the bound variables. However, in cases when a predi-
cate evaluation cannot be computed based on the local knowledge of a participant, the match-
ing should be delegated to the participant hosting the corresponding part of the distributed
runtime model My;y,. The delegation is possible through proxies representing remote objects

in the local runtime model, based on the object ownership discussed in Section 8.2.2.

We extend Algorithm 3.2.1 for a distributed platform in Algorithm 9.2.1. A monitor ex-
ecution at a participant can be initiated by calling FINDALLMATCHES (line 28 in Algorithm

Algorithm 9.2.1). There are two key cases that require further consideration:

« Delegating execution: The distributed runtime model My, refers to the unified knowl-
edge of multiple participants about the system, where each element of the model is
owned by a single participant. This way, if the distributed query execution algorithm is
finding matches over the complete runtime model, it needs to take into account matches
formed by joining the locally stored parts of the complete model. To support the dis-
tributed execution, we added an extra condition for evaluating extend search operations
to check if the value for the newly bound variable is part of the local knowledge base.
If this is not the case, query execution is delegated to the owner of the data, i.e., re-
ceiver will execute the CONTINUE procedure. This extension is shown in lines 9-10 in
Algorithm 9.2.1.

« Gathering matches: Delegating a query execution to a remote participant can be done
asynchronously in accordance with the actor model [HBS73] as in lines 12-14. This
way, finding local matches can continue without waiting for replies from remote partic-
ipants. However, the execution of neither FINDALLMATCHES nor CONTINUE cannot be
completed before awaiting all matches from remote participants and fusing them with

the local results (see lines 30-31 and lines 24-26 respectively).

122

9.2 Distributed Evaluation of Graph Queries

Algorithm 9.2.1: Distributed query execution outline

1 Function EXECUTEQUERY(g, idx, Zp) is

2 searchPlan «— LookuPPLAN(p)

3 if size(searchPlan) = idx then return {Z,} ;

4 matches «— 0
5 PRED « predicate evaluated by searchPlan[idx]

6 if searchPlan[idx] is extend then

7 for e in {all candidates in M} do

8 Z, — Zp U {op e}

9 if e is not owned by current participant then
10 ‘ futureeCONTINUE(sender,(p,idx,ZI’,) store future
11 else if [[PRED]]Z =1 then
12 next « idx+1
13 matches « matchesUEXECUTEQUERY(¢,next,Zp)
14 end
15 end
16 else if HPRED}]% = 1then
17 next «— idx+1
18 matches«— matchesUEXECUTEQUERY(p,next,Z)
19 end
20 return matches
21 end
22 Procedure CONTINUE(sender,(p,idx,ZP) is
23 matches«<—EXECUTEQUERY (¢, idx, Zp)

24 await all futures stored in EXECUTEQUERY
25 add remote results to matches

26 send matches to sender

27 end

28 Procedure FINDALLMATCHES() is

29 allMatches «— EXECUTEQUERY(¢, 0, D)

30 await all futures stored in EXECUTEQUERY
31 add remote results to allMatches

32 end

9.2.2 Semantics of Distributed Query Evaluation

Each query is initiated at a given computing unit which will be responsible for calculating
query results by aggregating the partial results retrieved from its neighbors. This aggrega-
tion has two different dimensions: (1) adding new matches to the result set calculated by a
different participant, and (2) making a potential match more precise. While the first case is a
consequence of the distributed runtime model and query evaluation, the second case is caused

by uncertain information caused by message loss/delay.

Fortunately, the definition of graph queries in Definition 7 can be used with 3-valued logic

with logic values 1, 0, and '/2, where the latter represents uncertain or unknown information.

123

9.2 Distributed Evaluation of Graph Queries

This can be used to provide semantic treatment for the first case: any match reported to the
requester by any neighboring participant will be included in the query results if its truth
evaluation is 1 or !/2. As such, any potential violation of a safety property will be detected,

which may result in false positive alerts but critical situations would not be missed.

However, the second case necessitates extra care since query matches coming from differ-
ent sources (e.g. local cache, reply messages from participants) need to be fused in a consistent

way. This match fusion is carried out by participant p as follows:

« If a match is obtained exclusively from the local runtime model of p, then it is a certain
match, formally [¢(oy,...,0,)]@p = 1.

« If a match is sent as a reply by multiple participants p; that were sent a request to
continue the evaluation of a query, (with p; € cont(p)), then we take the most certain

result at p, formally, [¢ (o, ..., 0,)]@p := max{[¢(o1,...,0,)]@pi|pi € cont(p)}.
« Otherwise, tuple oy, . .., 0, is surely not a match: [¢(oy,...,0,)]@p = 0.

Note that in the second case uses max{} to assign a maximum of 3-valued logic values wrt.
information ordering (which is different from the numerical maximum used in Definition 7).
Information ordering is a partial order ({'/2,0,1},E) with '/2 E 0 and !/ C 1. It is worth

pointing out that this distributed truth evaluation is also in line with Sobocinski 3-valued

logic axioms [Sob52].

Example 23. Figure 9.2 shows 6 messages from the beginning of a query evaluation
sequence for monitor closeTrains initiated at participant P; over the runtime model de-
picted in Figure 8.2. Calls are asynchronous (cf. actor model), and numbers represent the
order between timestamps of messages. In this example, only (the first few) requests are

shown and replies are omitted to keep the illustrative example simple.

When the query is initiated (message 1 or m1 for short), its query identifier is sent
along with the initially empty list of variable bindings and the search operation index
0. Then, according to the first search operation, participant P; will look for appropriate
variable values variable ¢ potentially satisfying the predicate Train. Three objects are
considered: try, tr; and try out of which tr; is managed by the remote participant P;, so
that m2 is sent from P, to P, delegating query execution by supplying the query identifier,
the index of the next search operation, and the computed variable binding. Similarly, in
m3, a message is sent to P; with the t — try binding, as try is hosted by P3;. Once P; sent

the messages in a non-blocking way, it proceeds with the execution of the search plan.

124

9.2 Distributed Evaluation of Graph Queries

[P1:Par‘ticipant] [PZ:Parlticipant] [P3:Par'ticipant]

1. [[CloseTrains]]@P;
Next operation index: 0;
Variable binding: empty

2. [CloseTrains]J@P,
Next operation index: 1;
Variable binding:

t—tny

3. [CloseTrains]|@P3
Next operation index: 1;
Variable binding:

I trg

' 4. [CloseTrains]|@Ps
+ Next operation index: 4;
Variable binding:
t > trp
S Sy
m > S3

! 5. [CloseTrains]|@P;
' Next operation index: 4;
! Variable binding:

b= tn 6. [CloseTrains]|@P,
$ S0 Next operation index: 4;
me s Variable binding:

t = trg

S > sg

m > sg

Figure 9.2: Query execution requests across participants while evaluating closeTrains

Next, when the binding with ¢t +— try, s — sy, and m — ss is computed by P; in search
step #3, it is sent to P, in m4 along with the next operation index, 4. The next message
mb5 sent by P, is a follow-up request to m2 with the ¢ — try, s — sy, and m +— s; binding
is sent to Py, the host of s;. The last message depicted in Figure 9.2, mé6 is also a follow-up

request by Ps. It is based on m3 and sent to P,, the host of sg.

9.2.3 Performance Optimizations

Each match sent as a reply to a participant during distributed query evaluation can be cached
locally to speed up the re-evaluation of the same query within the query cycle. This caching

of query results is analogous to memoing in logic programming [War92].

125

9.2 Distributed Evaluation of Graph Queries

Currently, cache invalidation is triggered at the end of each query cycle by the local physi-

cal clock, which we assume to be (quasi-)synchronous with high precision across the platform.

This memoing approach also enables units to selectively store messages in the local cache
depending on their specific needs. Furthermore, this can incorporate to deploy query services
to computing units with limited amount of memory and prevent memory overflow due to the

several messages sent over the network.

9.2.4 Semantic Guarantees and Limitations

Consistency. Our approach ensures that query execution initiated at any two participants
will not yield contradicting query results. This is achieved by the single source of truth prin-

ciple when only an owner of an object can serve a read request during query execution.

Furthermore, in case of a communication failure, the results may contain incomplete or
uncertain matches by the end of the query cycle. However, these will (1) overestimate the
complete set of query results and (2) two result sets obtained by two different platform units

will still not contradict each other.

Termination. We can guarantee that query evaluation terminates despite potential mes-
sage losses, i.e., there is no deadlock or livelock in the distributed query protocol. To show
this property, it is enough to see that the evaluation of queries (1) is a monotonous process in
terms of search operation execution and (2) a search operation cannot halt the execution. Con-
dition (1) holds because whenever a participant is executing an operation that incurs query
delegation, the delegation will start from the next operation in the plan. This way execu-
tion will never go back to a previous operation. Condition (2) holds because the model size is

bounded thus all model elements can be traversed.

Assumptions and limitations. There are also several assumptions and limitations of our
approach. We only assumed delay/loss of messages, but not the failures of computing units.
We also excluded the case when participants maliciously send false information. Instead of
refreshing local caches in each cycle, the runtime model could incorporate information aging
which may enable to handle other sources of uncertainty (which is currently limited to con-
sequences of message loss). Finally, in case of longer cycles, the runtime model may no longer
provide up-to-date information at query evaluation time. We believe that some of these limita-

tions can be handled in future work by various adaptations of the query evaluation protocol.

126

9.3 Evaluation

9.3 Evaluation

We conducted measurements to evaluate the scalability of our distributed query evaluation

technique to address the following research question:

RQ1 How does the distributed graph query execution technique scale w.r.t model size?
RQ2 How does the distributed graph query execution performance change with increasing

number of participants in the execution platform?

9.3.1 Benchmark Setup

Similarly to the evaluation presented in Section 8.4, in order to increase the representative-
ness of our measurements, we have used a physical and a virtual platform, and the prototype
implementation relies on the same commercial DDS library for network communication. In
addition, we have implemented distributed runtime monitors using two different case studies

for the two different evaluation platforms.

Real CPS benchmark. For the measurements over the real CPS platform, We rely on the
MoDeS3 railway CPS demonstrator as the domain of our experiments to synthesize various
distributed runtime models. Since the original runtime graph model of MoDeS3 has only a
total of less than 100 objects and a total of 6 participants, we scale up this initial model. To
ensure that structurally consistent models are generated, we follow a template-based method,
which is a simplified version of [He+17]. Altogether, we use the same model generator and
queries as in our former paper [c5] to be able to compare our results with the ones obtained
at an earlier stage of the development. We executed the queries introduced in Example 1 over

these scaled-up models.

Virtual CPS benchmark. For the measurements over the virtual platform, we use the
model generator and graph queries of the open Train Benchmark [Sza+17] by making only
the necessary technological adaptations for a DDS-compatible execution platform. We did not
implement all queries of the benchmark, but selected three with different complexities after

consulting with the authors of the benchmark.

127

9.3 Evaluation

9.3.2 Benchmark Results Over Real CPS Platform

Query execution times.

The query execution times over models deployed to a single BBB were first measured to obtain
a baseline evaluation time of monitoring for each rule (referred to as local evaluation). Then
the execution times of system-level distributed queries were measured over the platform with

6 BBBs, evaluating two different allocations of objects (standard and alternative evaluations).

In Figure 9.3 each result captures the times of 29 consecutive evaluations of queries, while
Figure 9.4 shows the average run times of each query over models with different sizes. Prior
to each benchmark, an initial warm-up evaluation is done and the results of this step are dis-
carded. A query execution starts when a participant initiates evaluation, and terminates when

all participants have finished collecting matches and sent back their results to the initiator.

Overhead of distributed evaluation. On the positive side, the performance of graph query
evaluation on a single unit is comparable to other graph query techniques reported in [Sza+17]
for models with approximately 0.5M objects, which shows a certain level of maturity of our
prototype. Furthermore, the CPS demonstrator showed that distributed query evaluation yields
run times, which are comparable with run times yielded by local evaluation on models over
4200 objects in 3 out of the 4 cases, which is promising. In case of the most complex Mis-
aligned turnout query, which uses multiple query calls, the distributed evaluation takes up to
13.77x longer compared to local evaluation, which shows the negative impact of query calls

on the execution time.

Finally, distributed query evaluation on larger models had performance problems with
Train locations, which is a simple query (2.92x slower execution compared to local evaluation
on the largest model). The reason is this query has a large result set that roughly equals to 20%

of the complete model size, thus communication of results imposes intense network traffic.

Altogether, our measurements results in Figure 9.3 indicate one order of magnitude better

scalability for query execution compared to results reported in our former paper [c5].

Impact of allocation on query evaluation. We synthesized different allocations of model
elements to computing units to investigate the impact of allocation of model objects on query

evaluation. With the real CPS benchmark model in particular, we chose to allocate all Trains

128

9.3 Evaluation

local

standard

alternative

(\ra%

e [s]

£ 0.5

——

00cy

Execution ti

__I::l__
il

000¢t

8]

t

0000Z¥

CloseTrains —+

MisalignedT. —+
EndOfSiding —|

TrainLocations] +

CloseTrains A +
EndOfSiding -|

MisalignedT. +

e
o
=

~<

TrainLocations] O|

CloseTrains - ¢|
MisalignedT. -
EndOfSiding -|

Figure 9.3: Query execution times in MoDeS3 case study

TrainLocationst

to a dedicated BBB, and assigned every other node stored previously on this BBB to the rest

of the participants.

Interestingly, we see no major difference in run times of individual queries between the two

different allocation scenarios (standard and alternative), while previous results [¢5] showed

19.92x slowdown for extreme cases using the alternative allocation. However, since that initial

prototype, we managed to significantly improve the distributed query evaluation algorithm,

and exploit the high data throughput of the DDS communication middleware.

We find that distributed graph query evaluation performance is comparable to that of local

evaluation, but subquery calls and large query match sets mean performance bottlenecks.

129

9.3 Evaluation

local standard alternative

(11,001 10.0 - 10.0
o ‘ Query
g 0.104 -o- Close trains
S ' 1.0~ 1.0 -~ End of siding
.g -=- Misaligned turnout
g 0.01+ — Train locations
L|>j 0.1+ 0.1

T T T C|> T T T é T T T C|>

s 8 £ 8§ g 8 £ 8 g 8 ¢ g

s . g 8 ¥ § g 8 ¥ 9 g 8

< < <
Model Size

Figure 9.4: Average query execution times in MoDeS3 case study

9.3.3 Virtual CPS Benchmark Results

Scalability of query evaluation over a virtual platform. With the virtual CPS platform
we aimed at assessing how our query-based runtime monitoring approach performs w.r.t the
number of participants in the platform. To achieve this, we adapted the model generator com-
ponent of Train Benchmark [Sza+17] to also supply the generated models with allocation
information. Then, we generated models with objects 1.3k — 250k for four different allocation
to 2, 5, 10, and 20 participants, respectively. Figure 9.5 shows the run times of 30 subsequent
query evaluations over a virtual CPS platform consisting of multiple Docker containers, while

Figure 9.6 shows the average of query run times over different models.

The results show that initially, query execution times are approximately the same for all
allocations. Then, starting from 64k objects, execution times over the same model size grad-
ually start decreasing as the number of participants increases. The biggest gain on average
is for the query SwitchSet query: evaluation on a platform with 20 participants over a model
with 250k elements is 2.28x faster than on a platform with only 2 participants. This means that
increasing the degree of distribution in the system yields lower execution times for queries if

the models are larger than a certain size.

A higher degree of distribution in the system results in lower query evaluation time for

models over 126k objects, while it has negligible performance impact for smaller models.

130

9.3 Evaluation

2 participants | 5 participants || 10 participants | 20 participants
0.125 -
0.100 é — = ==
. —
00759 _o_) = = 3
0.050 ry
0.025 L.—=— == — ==
0.100 -) =5 ==
w
0.075 " — = = a
0.0501 o
0.025 -—%= — [] — []
0.100 e ° — ==
° ° ° 0
0.075 o b _%_ =2
0.050 . hd S
I — m— =
" 0.09- — == H == _
o 0.07- . . — == R
— - w
£ 0.051 S
) -
- 0.031=8= — — LJ
o _‘__ —— ==
‘S 0.09) o
S 0.07- . = °* —_ == S
2 0.05 . ’ =
w0 — —
0.03 1= ®
0.100 - 5 — — == _
S
0.075 o é — == &
0.0504 ___ @ —4- - —
L @
0.150)
0.125 == °)
0.100 - g =&
| [[] ~
00751 o 3 - — —
025 + }
0.20 1 3
0.15- - s S
010' [] — + + — ——
IB T IS T S T T IS T
-0 0 0 -0
£ % 3 £ W F £ BT = > 3
P 2 2 2 2 2 L 2 2 2 2 2
3 % 2 3% % 85 % g 3 3% ¢
@ o @ o @] @ @]
S 2 g & 23 &£ 2 & & 2 3
(o] (o] (o <
£ £ £ £
& A Query & &

Figure 9.5: Train Benchmark scalability evaluation results (individual run times)

131

9.3 Evaluation

2 participants || 5 participants || 10 participants| 20 participants
—
%]
[
)
£ Query
“; 0.10 - PosLength
R SemaphoreNeighbor
-—
3 SwitchSet
$ 0.054
X
L
O'03_I T 1T I['\l_f")' T 1T I]I\L{Ijl T 1T I'I\L;_)I T 1T I]I\Llr)
SN — SN— SN — STN—
2 3 5RNRESR B SRR EESe B sINERCe B sINGES
g =F2Jvon = F2IJvomn ¥ = F2Jvomn ¥ =F2J oo
— 02T AR 0 2T NB— m 0 2R IAR— 02 FAn
Model Size

Figure 9.6: Train Benchmark scalability evaluation results (average run times)

9.3.4 Threats to Validity

Construct validity. We assessed query execution performance using a single query plan
synthesized automatically by the VIATRA framework that uses heuristics for query execu-
tion a single computation unit insead of considering a distributed platform. We believe that
execution times of distributed queries could be further decreased with a carefully constructed
search plan. In our assessment, we did not use fault injection to enforce message losses in

order to investigate the fault tolerance capabilities of our protocol.

Internal validity. First, to measure the performance of our approach, the platform devices
executed only query services. We ran Linux containers on a remote server located in a cloud
infrastructure, so that we had very limited influence on the allocation of the machines and the
existing workload that is present on the same physical host as our instances may impact the

results.

External validity. Host machines running distributed query programs are connected to
an isolated local area network: in Section 9.3.2, the physical platform units were connected
via local Ethernet connection, while in Section 9.3.3, a virtual Ethernet network was used.
Performance on a real network with a busy channel would likely have longer delays and

more message losses thus increasing overall execution time.

132

9.4 Summary

9.4 Summary

In this chapter, we presented a distributed graph query evaluation for runtime monitoring of
CPSs. We adapted the local search-based query evaluation algorithm to a distributed setting,
and showed how 3-valued logic can be used to represent uncertain information caused by
network errors in query results. We performed scalability assessment of the proposed query
evaluation approach using two different platforms and two different case studies. In particular,

this chapter showed our results for the second contribution group (Co2.2-Co02.5).

Publications related to this chapter. The distributed query evaluation was presented at
several international conferences [c5; c4]. The formal definition of graph query evaluation
using 3-valued logic, and the definition of multiple distributed query evaluation strategies is
my contribution. The development of the software prototype is a joint effort of Gabor Szilagyi
and myself. The evaluation of the approach on a real CPS platform is the contribution of Gabor
Szilagyi, while the evaluation on the virtual platform is my contribution. Andras Voros was

helping the work as advisor and provided continuous feedback.

133

Final Conclusion & Future Work

This chapter provides a summary and concluding remarks regarding the contributions of this

thesis in Section 10.1, while Section 10.2 discusses future work.

10.1 Thesis Summary

Runtime monitoring of smart and safe cyber-physical systems has become an important topic
in the last decade. This thesis investigated novel runtime monitoring approaches which are
predicated on well-established graph-based techniques typically used in the design tools of
such systems. However, the adaptation of these techniques faces several serious challenges

which we addressed in this work.

Runtime monitoring of CPS by graph queries In this thesis, we proposed a runtime
verification technique for smart and safe CPSs by using a high-level graph query language to
capture safety properties for runtime monitoring and runtime models as a rich knowledge rep-
resentation to capture the current state of the running system. The approach was implemented
and evaluated on the physical system for multiple resource-constrained environments typical
in CPS applications. Our first results show that it scales for medium-size runtime models even

on platforms where the available memory space is limited.

Timing analysis of query-based monitors In this paper, we presented a method to pro-
vide safe and practical WCET bounds for runtime monitoring programs derived from graph
queries to enable their use in real-time systems. On the one hand, we provide a static WCET es-
timate by incorporating low-level analysis results from traditional IPET-based tools and high-

level domain-specific constraints into the objective function of an advanced graph solver. In

134

10.1 Thesis Summary

addition to a tight WCET estimate, the result also entails a witness graph model where the
query-based monitoring program execution time is expected to be the longest. On the other
hand, we combine state-of-the-art parametric WCET computation with runtime graph statis-
tics to allow online WCET recomputation at runtime upon relevant model changes to enable

to reallocate time slots to a tighter bound.

We carried out extensive evaluation of our approach on an industry-grade hardware plat-
form using a variety of graph models as inputs for query programs, and assessed the tightness
of computed WCET using three different algorithms. We managed to construct witness mod-
els for highest estimated execution times of queries as well as random graph models as inputs
for graph query programs as an attempt to showcase high execution times. While we have no
formal guarantee that worst-case timing behavior is exhibited on witness models as inputs, in

all our experiments, the longest run times were always measured on such witness models.

Distributed runtime graph models We showed how our runtime monitoring approach
can be extended for distributed CPS. The solution is a time-triggered runtime model manage-
ment approach, that keeps the information in the model close to the data sources. Models and
high-level graph queries provide an expressive language to capture correctness requirements
during runtime. Our solution is built on top of the standard DDS reliable communication mid-

dleware that is widely used in self-adaptive and resource constrained CPS applications.

Our approach introduces an efficient handling of a distributed knowledge base stored as
a graph over a heterogeneous computing platform. Consistent manipulation and update of
the knowledge base is defined as a distributed and time-triggered model management pro-
tocol and implemented by exploiting the fine-grained QoS guarantees provided by the DDS

communication middleware.

The scalability of our approach was evaluated in the context of the physical system of
MoDeS3 CPS demonstrator with promising results such as high throughput for model updates

and good scalability with increasing change sizes and number of participants.

Query-based runtime monitoring in distributed systems We proposed a query evalu-
ation protocol for monitors in smart and safe CPSs with distributed components. The monitor
specification language is execution platform-agnostic and captures safety properties for run-
time monitoring on a high level of abstraction. A distributed query evaluation technique was
introduced where none of the computing units has a global view of the complete system. The

approach was implemented and evaluated on the physical system of MoDeS3 CPS demon-

135

10.2 Future Work

strator as well as on a virtual CPS environment to assess scalability. In our results, distributed
monitor evaluation in most cases comparable to local evaluation times on a single device,

which is a positive sign regarding the viability of the solution.

Finally, a summary of research questions, objectives, and contributions of this thesis is

shown in Table 10.1.

Table 10.1: Summary of contributions

Ob1. Ob2. Ob3. Ob4. Obs.

iY
-
o
5 g :
-~ -
3 S g
N] = =
S £ = &
(=} - L) B
S = o] k7
Q) o et o
= gt g = 5
2 8 Gt g 2 <
= 5] - - =)
3 g S s E
= g < 3 % g
2 a < 0 2
s 8 £ 5 Z £
2 i3] s < = 0
3 & & 3] 3! =
A A ey 22 A R
. Concept: Graph Data Structures for ES 5.1 Co1.1
Real-Time p Imol . c
Platform rototype Implementation 5.1 0l.3
RQ1 Scalability Evaluation 5.2 Col4
o Concept: Distributed Runtime Model 8.1 Co1.2
Distributed .
Platf Prototype Implementation 8.2 Col3 Col.4
atform Scalability Evaluation 8.4 Col.4
. Concept: Graph Query at Runtime 6.1 Co2.1
Real-Time P Imol . C
Platform rototype Implementation 6.2 02.4
RQ2 Scalability Evaluation 6.3 Co25
o Concept: Distributed Query at Runtime 9.1 Co2.2-3
Distributed p Imol . C C
Platform rototype Implementation 9.2 02.4 02.4
Scalability Evaluation 9.3 Co2.5
Concept: Static WCET Estimation 73,74 Co3.1
RQ3 Real-Time Assessment of WCET Estimate 7.7 Co3.4 Co3.2
Platform Concept: On-line WCET Estimation 7.5,7.6 Co3.3
Assessment of WCET Estimate 7.7 Co3.4 Co34

10.2 Future Work

We summarize the research directions in three general areas: runtime graph models, query-

based runtime monitoring, and timing analysis of query-based monitors.

136

10.2 Future Work

10.2.1 Runtime Graph Models

A short-term research goal is to provide and evaluate a fully-fledged hard real-time model
management framework based on the presented requirements in Chapter 5 for resource-
constrained embedded systems. Currently, we provide a prototype implementation, but it will

be interesting to derive safe and tight WCET bounds of certain model update operations.

In terms of the distributed runtime model update protocol presented in Chapter 8, a re-
maining research task is to investigate in details what general properties does the proposed
distributed runtime model protocol guarantee (e.g., global consistency, fairness, and liveness).
Although we have tested several corner cases using the simulator features of the statechart
modeling tool that we used for capturing the update protocol, theorems with formal proofs

would greatly help to increase confidence in the protocol.

10.2.2 Distributed Query Evaluation

The details of search plan generation for distributed query evaluation is neglected in Chap-
ter 9, and we rely on former results in the field of graph pattern matching. For this reason, the
query search plans used in our approach are optimized for models stored in a central location.
In the future, it will be useful to investigate how to characterize effective search plans with

graph model allocations in the context of distributed queries used for runtime monitoring.

Furthermore, a promising research direction is to experiment with dynamic search plans
for query evaluation [Var+15], where significant changes to the runtime model structure and
model allocation can trigger changes to the query search plan at runtime which can improve
performance. In addition, more efficient query evaluation algorithms can be incorporated into

the system to provide near real-time analysis capabilities.

As a part of a long-term future research agenda, the presented WCET estimation approach
for query-based runtime monitors could be extended to a distributed setting to provide timing
guarantees for distributed monitoring queries as well. In addition to the characteristics of the
graph model, query execution time estimates need to take into account the latency of the

network and the allocation of data.

Moreover, as a long-term goal, the graph query based approach could be integrated with

temporal logic languages to support an even wider range of specifications. As we pointed out

137

10.2 Future Work

in Section 6.1, graph queries can be extended to express temporal behavior [DRV18] but the

current work is restricted to structural safety rules.

10.2.3 Timing Analysis

In the short run, the proposed WCET estimation approach for graph query programs in Chap-
ter 7 can be improved by incorporating hardware platform-specific constraints in the objective
function of the witness model generation task directly rather than relying on timing analysis
results from an IPET analysis. Currently, the results from IPET provide basic block timings
which are represented as constants in the objective function, which increase the overesti-
mation. Capturing the hardware-specific constraints directly in the model generator enables

more precise WCET calculation by adding execution context sensitivity to basic block timings.

Additionally, the evaluation of the presented WCET estimation approach should be done
on further hardware platforms to demonstrate the generalizability of the approach. Ideally,
devices that have advanced hardware features (e.g., multicore) or use different core designs

should be used as well.

As a part of a long-term future research agenda, the presented WCET estimation approach
could be extended to provide witness models with specific data placement in memory where
the execution time equals to the WCET of the program. It will be interesting to connect the
memory-specific features of the underlying hardware with the abstract features of the graph

models to determine the longest possible execution times.

138

[Abe+15]

[Abr+08]

[Aerlla]

[Aer11b]

[Afz+17]

[ANR17]

[Bal+10]

[Bar+12]

[BBF09]

Bibliography

Jaume Abella et al. WCET analysis methods: Pitfalls and challenges on their trust-
worthiness. 10th IEEE International Symposium on Industrial Embedded Systems -
Proceedings, 2015, pp. 39-48. por: 10.1109/SIES.2015.7185039.

Montserrat Abril, Federico Barber, Laura Ingolotti, Miguel A. Salido, Pilar Tormos,
and Antonio Lova. An assessment of railway capacity. Transportation Research
Part E: Logistics and Transportation Review 44(5), 2008, pp. 774—806.

Radio Technical Commission for Aeronautics. DO-178C: Software Considerations

in Airborne Systems and Equipment Certification. 2011.

Radio Technical Commission for Aeronautics. DO-330: Software Tool Qualifica-

tion and Considerations. 2011.

Wasif Afzal et al. The MegaM@Rt2 ECSEL project: megamodelling at runtime -
scalable model-based framework for continuous development and runtime val-
idation of complex systems. Proceedings - 20th Euromicro Conference on Digital
System Design, DSD 2017, 2017, pp. 494-501. por: 10.1109/DSD.2017.50.

Cesare Alippi, Stavros Ntalampiras, and Manuel Roveri. Model-Free Fault Detec-
tion and Isolation in Large-Scale Cyber-Physical Systems. IEEE Trans. Emereg.
Topics Comput. Intell. 1(1), 2017, pp. 61-71. por1: 10.1109/TETCI.2016.2641452.

Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat.
Otawa: an open toolbox for adaptive WCET analysis. In: Software Technologies for
Embedded and Ubiquitous Systems, vol. 6399, 2010. por: 10.1007/978-3-642-
16256-5_6.

Howard Barringer, Ylies Falcone, Klaus Havelund, Giles Reger, and David E Ryde-
heard. Quantified event automata: towards expressive and efficient runtime mon-
itors. In: FM, pp. 68—84. 2012. por: 10.1007/978-3-642-32759-9_9.

Gordon S. Blair, Nelly Bencomo, and Robert B. France. Models@run.time. IEEE
Computer 42(10), 2009, pp. 22-27. por: 10.1109/MC.. 2009 . 326.

139

https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.1109/DSD.2017.50
https://doi.org/10.1109/TETCI.2016.2641452
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1109/MC.2009.326

Bibliography

[Beh+06]

[BEL11]

[Ber+11]

[BF16]

[BFL17]

[Bla+10]

[BLS11]

[BPO5]

[Bro+06]

[Buc+14]

Gerd Behrmann, Alexandre David, Kim G Larsen, John Hakansson, Paul Petter-
son, Yi Wang, and Martijn Hendriks. UPPAAL 4.0. In: Third International Con-
ference on the Quantitative Evaluation of Systems, pp. 125-126. IEEE, 2006. DoTI:
10.1109/QEST.2006.59.

Stefan Bygde, Andreas Ermedahl, and Bjorn Lisper. An efficient algorithm for
parametric WCET calculation. Journal of Systems Architecture 57(6), 2011, pp. 614—
624. por: 10.1016/j.sysarc.2010.06.009.

Gabor Bergmann, Zoltan Ujhelyi, Istvan Rath, and Daniel Varr6. A graph query
language for EMF models. In: Theory and Practice of Model Transformations - 4th
International Conference, ICMT 2011, Zurich, Switzerland, June 27-28, 2011. Pro-
ceedings, pp. 167-182. 2011. por: 10.1007/978-3-642-21732-6_12.

Andreas Bauer and Yliés Falcone. Decentralised LTL monitoring. Formal Methods
in System Design 48(1-2), 2016, pp. 46—93. por1: 10.1007/s10703-016-0253-8.
arXiv: 1111.5133.

Clément Ballabriga, Julien Forget, and Giuseppe Lipari. Symbolic WCET compu-
tation. ACM Trans. Embedded Comput. Syst. 17(2), 2017. por: 10.1145/3147413.

Régis Blanc, Thomas A Henzinger, Thibaud Hottelier, and Laura Kovacs. Abc:
algebraic bound computation for loops. In: International Conference on Logic for

Programming Artificial Intelligence and Reasoning, pp. 103—118. 2010.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4), 2011, p. 14. por: 10.
1145/2000799.2000800.

Francois Bodin and Isabelle Puaut. A wcet-oriented static branch prediction scheme
for real time systems. In: 17th Euromicro Conference on Real-Time Systems (ECRTS),
pp. 33-40. 2005.

Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon.
Metamodel-based test generation for model transformations: an algorithm and
a tool. In: 2006 17th International Symposium on Software Reliability Engineering,
pp. 85-94. 2006.

Christian Buckl, Michael Geisinger, Dhiraj Gulati, Fran J Ruiz-Bertol, and Alois
Knoll. Chromosome: a run-time environment for plug & play-capable embedded
real-time systems. ACM SIGBED Review 11(3), 2014, pp. 36-39.

140

https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1016/j.sysarc.2010.06.009
https://doi.org/10.1007/978-3-642-21732-6_12
https://doi.org/10.1007/s10703-016-0253-8
https://arxiv.org/abs/1111.5133
https://doi.org/10.1145/3147413
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800

Bibliography

[Bur+04]

[Bur+05]

[CB02]

[CDHO00]

[Che+11]

[Cic+17]

[CJ11]

[CK96]

[Col+12]

Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling. Incremental
design and formal verification with uml/rt in the fujaba real-time tool suite. In:
Proceedings of the International Workshop on Specification and Validation of UML
Models for Real Time and Embedded Systems, SVERTS2004, Satellite Event of the 7th
International Conference on the Unified Modeling Language, UML, 2004.

Sven Burmester, Holger Giese, Andreas Seibel, and Matthias Tichy. Worst-case
execution time optimization of story patterns for hard real-time systems. In: 3rd

International Fujaba Days, pp. 71-78. 2005.

Antoine Colin and Guillem Bernat. Scope-tree: a program representation for sym-
bolic worst-case execution time analysis. In: Proceedings 14th Euromicro Confer-
ence on Real-Time Systems. Euromicro RTS 2002, pp. 50-59. 2002.

Olivier Corby, Rose Dieng, and Cédric Hébert. A conceptual graph model for w3c
resource description framework. In: Bernhard Ganter and Guy W. Mineau (eds.),
Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 468—482.
Springer Berlin Heidelberg, 2000.

Betty H. C. Cheng et al. Using models at runtime to address assurance for self-
adaptive systems. In: Models@run.time, pp. 101-136. 2011. po1: 10.1007/978-3-
319-08915-7_4.

Federico Ciccozzi, Ivica Crnkovic, Davide Di Ruscio, Ivano Malavolta, Patrizio Pel-
liccione, and Romina Spalazzese. Model-Driven Engineering for Mission-Critical
IoT Systems. IEEE Software 34(1), 2017, pp. 46—53. por: 10.1109/MS.2017.1.

Duc Hiep Chu and Joxan Jaffar. Symbolic simulation on complicated loops for
WCET path analysis. Embedded Systems Week 2011, ESWEEK 2011 - Proceedings
of the 9th ACM International Conference on Embedded Software, EMSOFT’11, 2011,
pp. 319-328.

Kong-Rim Choi and Kyung-Chang Kim. T*-tree: a main memory database index
structure for real time applications. In: 3rd International Workshop on Real-Time
Computing Systems and Applications, pp. 81-88. 1996. po1: 10 . 1109 /RTCSA .
1996 .554964.

Christian Colombo, Adrian Francalanza, Ruth Mizzi, and Gordon] Pace. poly-

Larva: runtime verification with configurable resource-aware monitoring bound-

141

https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1109/MS.2017.1
https://doi.org/10.1109/RTCSA.1996.554964
https://doi.org/10.1109/RTCSA.1996.554964

Bibliography

[Cru+20]

[CS06]

[CSB90]

[Cse+02]

[Des+15]

[DLT15]

[Druoo]

[DRV18]

aries. In: International Conference on Software Engineering and Formal Methods,
pp. 218-232. 2012.

Jesus Gorronogoitia Cruz, Andrey Sadovykh, Dragos Truscan, Hugo Bruneliere,
Pierluigi Pierini, and Lara Lopez Muiiiz. MegaM@ZRt2 EU Project: Open Source
Tools for Mega-Modelling at Runtime of CPSs. In: Open Source Systems, pp. 183-
189. Springer International Publishing, 2020.

Hugues Cassé and Pascal Sainrat. OTAWA, a framework for experimenting WCET
computations. 3rd European Congress on Embedded Real-Time (January), 2006,

pp- 1-8.
H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time tasks

under precedence constraints. Real-Time Systems 2(3), 1990, pp. 181-194. por: 10.
1007/BF00365326.

Gyorgy Csertan, Gabor Huszerl, Istvan Majzik, Zsigmond Pap, Andras Pataricza,
and Daniel Varro. Viatra-visual automated transformations for formal verification
and validation of uml models. In: Proceedings 17th IEEE International Conference

on Automated Software Engineering, pp. 267-270. 2002.
Ankush Desai, Sanjit A. Seshia, Shaz Qadeer, David Broman, and John C. Eidson.

Approximate synchrony: an abstraction for distributed almost-synchronous sys-
tems. In: Computer Aided Verification: 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II. Springer, 2015, pp. 429-
448. por: 10.1007/978-3-319-21668-3_25.

Normann Decker, Martin Leucker, and Daniela Thoma. Monitoring modulo the-
ories. Int. J. Softw. Tools Technol. Transfer, 2015, pp. 1-21. por1: 10.1007/s10009-
015-0380-3.

Doron Drusinsky. The temporal rover and the ATG rover. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 1885, 2000, pp. 323-330.

Istvan David, Istvan Rath, and Daniel Varr6. Foundations for Streaming Model
Transformations by Complex Event Processing. Software & System Modeling 17(1),
2018, pp. 135-162. por: 10.1007/s10270-016-0533-1.

142

https://doi.org/10.1007/BF00365326
https://doi.org/10.1007/BF00365326
https://doi.org/10.1007/978-3-319-21668-3_25
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/s10270-016-0533-1

Bibliography

[Dug+12]

[EF17]

[Ehr+06]

[ELK08]

[Emel1]

[Erm+07]

[Fan+14]

[Fer+08]

[FHO04]

P. S. Duggirala, T. T. Johnson, A. Zimmerman, and S. Mitra. Static and dynamic
analysis of timed distributed traces. In: 2012 IEEE 33rd Real-Time Systems Sympo-
sium, pp. 173-182. 2012. por: 10.1109/RTSS.2012.69.

Antoine El-Hokayem and Yliés Falcone. Monitoring decentralized specifications.
In: Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2017, pp. 125-135. ACM, 2017. po1: 10.1145/3092703.
3092723.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamen-
tals of algebraic graph transformation (monographs in theoretical computer sci-

ence. an eatcs series). secaucus. 2006.

Leon Evers, Maria Eva Lijding, and Jan Kuper. Generic multi-packet communica-
tion through object serialization. In: Proceedings of the 3rd international workshop
on Middleware for sensor networks - MidSens 08, ACM Press, 2008. po1: 10.1145/
1462698.1462703.

D Emery. Headways on high speed lines. In: 9th World Congress on Railway Re-
search, pp. 22-26. 2011.

Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Bjérn
Lisper. Loop bound analysis based on a combination of program slicing, abstract
interpretation, and invariant analysis. In: 7th International Workshop on Worst-
Case Execution Time Analysis (WCET’07), 2007.

Shifeng Fang, Li Da Xu, Yunqiang Zhu, Jiaerheng Ahati, Huan Pei, Jianwu Yan,
Zhihui Liu, et al. An integrated system for regional environmental monitoring
and management based on internet of things. IEEE Trans. Industrial Informatics
10(2), 2014, pp. 1596-1605.

Christian Ferdinand et al. Combining a high-level design tool for safety-critical
systems with a tool for wcet analysis of executables. In: Proc. of the 4th European
Congress on Embedded Real Time Software (ERTS), 2008.

Christian Ferdinand and Reinhold Heckmann. aiT: worst-case execution time pre-
diction by static program analysis. In: Reneé Jacquart (ed.), Building the Information
Society, pp. 377-383. Springer US, 2004.

143

https://doi.org/10.1109/RTSS.2012.69
https://doi.org/10.1145/3092703.3092723
https://doi.org/10.1145/3092703.3092723
https://doi.org/10.1145/1462698.1462703
https://doi.org/10.1145/1462698.1462703

Bibliography

[Fis+98]

[For82]

[Fou+12]

[FSB04]

[Galo6]

[Gar96]

[Gho+06]

[GHTO09]

[Gie+03]

Thorsten Fischer, Jorg Niere, Lars Torunski, and Albert Ziindorf. Story diagrams:
a new graph rewrite language based on the unified modeling language and java.
In: International Workshop on Theory and Application of Graph Transformations,
pp. 296—309. 1998.

Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 1982, pp. 17-37. po1: 10.1016/0004-
3702(82)90020-0.

Francois Fouquet, Grégory Nain, Brice Morin, Erwan Daubert, Olivier Barais,
Noél Plouzeau, and Jean-Marc Jézéquel. An eclipse modelling framework alter-
native to meet the models@runtime requirements. In: Robert B. France, Jiirgen
Kazmeier, Ruth Breu, and Colin Atkinson (eds.), Model Driven Engineering Lan-
guages and Systems, pp. 87-101. Springer Berlin Heidelberg, 2012.

Franck Fleurey, Jim Steel, and Benoit Baudry. Validation in model-driven engi-
neering: testing model transformations. In: Proceedings. 2004 First International
Workshop on Model, Design and Validation, 2004. Pp. 29-40. 2004.

Brian Gallagher. Matching structure and semantics: a survey on graph-based pat-
tern matching. AAAIFS 6, 2006, pp. 45-53.

Vijay K. Garg. Observation of global properties in distributed systems. Eighth IEEE
International Conference on Software and Knowledge Engineering, 1996, pp. 418-
425.

Arkadeb Ghosal et al. A hierarchical coordination language for interacting real-
time tasks. In: Proceedings of the 6th ACM & IEEE International conference on Em-
bedded software, pp. 132-141. 2006.

John C Georgas, André van der Hoek, and Richard N Taylor. Using architec-
tural models to manage and visualize runtime adaptation. Computer 42(10), 2009,
pp- 52-60.

Holger Giese, Matthias Tichy, Sven Burmester, Wilhelm Schéfer, and Stephan
Flake. Towards the compositional verification of real-time UML designs. Proceed-
ings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
2003, pp. 38—47. por: 10.1145/940071.940078.

144

https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1145/940071.940078

Bibliography

[Gon+16] Laszlo Gonczy, Istvan Majzik, Szilard Bozoki, and Andras Pataricza. MDD-based
design, configuration, and monitoring of resilient cyber-physical systems. Trust-

worthy Cyber-Physical Systems Engineering, 2016, p. 395.

[Got+15] Sebastian Gotz, Ilias Gerostathopoulos, Filip Krikava, Adnan Shahzada, and
Romina Spalazzese. Adaptive exchange of distributed partial Models@run.time
for highly dynamic systems. Proceedings - 10th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, 2015, pp. 64~
70. por: 10.1109/SEAMS.2015. 25.

[Gub+13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (IoT): a vision, architectural elements, and future

directions. Future generation computer systems 29(7), 2013, pp. 1645-1660.
[Gus+06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper. Auto-

matic derivation of loop bounds and infeasible paths for WCET analysis using
abstract execution. Proceedings - Real-Time Systems Symposium, 2006, pp. 57—-66.
por: 10.1109/RTSS.2006.12.

[Gut+16] Jasmin Guth, Uwe Breitenbiicher, Michael Falkenthal, Frank Leymann, and Lukas
Reinfurt. Comparison of iot platform architectures: a field study based on a refer-
ence architecture. In: 2016 Cloudification of the Internet of Things (CIloT), pp. 1-6.
2016.

[HA16] Jiewen Huang and Daniel] Abadi. Leopard: lightweight edge-oriented partition-
ing and replication for dynamic graphs. Proceedings of the VLDB Endowment 9(7),
2016, pp. 540-551.

[Har+15] Thomas Hartmann, Assaad Moawad, Francois Fouquet, Gregory Nain, Jacques
Klein, and Yves Le Traon. Stream my models: reactive peer-to-peer distributed
models@run.time. In: ACM/IEEE 18th International Conference on Model Driven
Engineering Languages and Systems (MODELS), pp. 80-89. IEEE, 2015. por: 10 .
1109/MODELS.2015.7338238.

[Har+17] Thomas Hartmann, Francois Fouquet, Matthieu Jimenez, Romain Rouvoy, and
Yves Le Traon. Analyzing complex data in motion at scale with temporal graphs.
In: The 29th International Conference on Software Engineering & Knowledge Engi-
neering (SEKE’17), p. 6. 2017.

145

https://doi.org/10.1109/SEAMS.2015.25
https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.1109/MODELS.2015.7338238
https://doi.org/10.1109/MODELS.2015.7338238

Bibliography

[Har+19]

[Has+15]

[Hav15]

[HBS73]

[He+17]

[HMM13]

[HOTS9]

[HR09]

[HRW08]

[Hu+20]

Thomas Hartmann, Francois Fouquet, Assaad Moawad, Romain Rouvoy, and Yves
Le Traon. GreyCat: Efficient what-if analytics for data in motion at scale. Infor-
mation Systems 83, 2019, pp. 101-117. po1: 10.1016/j.1is.2019.03.004.

M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos, B. Kantarci,
and S. Andreescu. Health monitoring and management using internet-of-things
(iot) sensing with cloud-based processing: opportunities and challenges. In: 2015
IEEE International Conference on Services Computing, pp. 285-292. 2015. por: 10.
1109/SCC.2015.47.

Klaus Havelund. Rule-based runtime verification revisited. Int. J. Software Tools
Technol. Trans. 17(2), 2015, pp. 143-170. por: 10.1007/s10009-014-0309-2.

Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A universal modular AC-
TOR formalism for artificial intelligence. In: International Joint Conference on Ar-
tificial Intelligence, pp. 235-245. 1973.

Xiao He, Tian Zhang, Minxue Pan, Zhiyi Ma, and Chang-Jun Hu. Template-based
model generation. Software & Systems Modeling, 2017, pp. 1-42.

Gergdé Horanyi, Zoltan Micskei, and Istvan Majzik. Scenario-based automated
evaluation of test traces of autonomous systems. In: DECS workshop at SAFE-
COMP, 2013.

Wen-Chi Hou, Gultekin Ozsoyoglu, and Baldeo K. Taneja. Processing aggregate
relational queries with hard time constraints. SIGMOD Rec., 1989. po1: 10.1145/
66926 .66933.

Jorg Herter and Jan Reineke. Making dynamic memory allocation static to sup-
port wcet analysis. In: 9th International Workshop on Worst-Case Execution Time
Analysis (WCET’09), 2009.

Jorg Herter, Jan Reineke, and Reinhard Wilhelm. Cama: cache-aware memory
allocation for wcet analysis. In: Work-In-Progress Session of the 20th Euromicro

Conference on Real-Time Systems, 2008.

Tingting Hu, Ivan Cibrario Bertolotti, Nicolas Navet, and Lionel Havet. Auto-
mated fault tolerance augmentation in model-driven engineering for cps. Com-
puter Standards and Interfaces 70, 2020, p. 103424. po1: https://doi.org/10.
1016/j.csi.2020.103424.

146

https://doi.org/10.1016/j.is.2019.03.004
https://doi.org/10.1109/SCC.2015.47
https://doi.org/10.1109/SCC.2015.47
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1145/66926.66933
https://doi.org/10.1145/66926.66933
https://doi.org/https://doi.org/10.1016/j.csi.2020.103424
https://doi.org/https://doi.org/10.1016/j.csi.2020.103424

Bibliography

[HVV07]

[Igb+15]

[JSS13]

[JTF17]

[Jiir03]

[KG93]

[KH10]

[KKS12]

[KKZ13]

[Koz16]

Akos Horvéth, Gergely Varr6, and Daniel Varré. Generic search plans for match-

ing advanced graph patterns. Electronic Communications of the EASST 6, 2007.
Muhammad Zohaib Igbal, Shaukat Ali, Tao Yue, and Lionel Briand. Applying UM-

L/MARTE on industrial projects: challenges, experiences, and guidelines. Software
and Systems Modeling 14(4), 2015, pp. 1367-1385. po1: 10.1007/s10270-014-
0405-5.

Ethan K. Jackson, Gabor Simko, and Janos Sztipanovits. Diversely enumerating
system-level architectures. In: EMSOFT, IEEE, 2013.

Yogi Joshi, Guy Martin Tchamgoue, and Sebastian Fischmeister. Runtime verifica-
tion of LTL on lossy traces. In: Proceedings of the Symposium on Applied Computing
- SAC ’17, pp. 1379-1386. ACM Press, 2017. por: 10.1145/3019612.3019827.

Jan Jurjens. Developing safety-critical systems with UML. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 2863, 2003, pp. 360-372. por: 10 . 1007 /978 - 3- 540 -
45221-8_31.

H. Kopetz and G. Grunsteidl. TTP - a time-triggered protocol for fault-tolerant
real-time systems. In: FTCS-23, pp. 524-533. 1993. por: 10.1109/FTCS . 1993.
627355.

Maximilian Koegel and Jonas Helming. Emfstore: a model repository for emf mod-
els. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ICSE 10, pp. 307-308. Association for Computing Ma-
chinery, 2010. por: 10.1145/1810295.1810364.

Woochul Kang, Krasimira Kapitanova, and Sh Son. Rdds: a real-time data distri-
bution service for cyber-physical systems. IEEE Trans. Ind. Informat. 8(2), 2012,
pp- 393-405. por: 10. 1109/TI1.2012.2183878.

Jens Knoop, Laura Kovacs, and Jakob Zwirchmayr. WCET squeezing, 2013, p. 161.
pol: 10.1145/2516821.2516847.

V. P.Kozyrev. Estimation of the execution time in real-time systems. Programming
and Computer Software 42(1), 2016, pp. 41-48. po1: 10.1134/50361768816010059.

147

https://doi.org/10.1007/s10270-014-0405-5
https://doi.org/10.1007/s10270-014-0405-5
https://doi.org/10.1145/3019612.3019827
https://doi.org/10.1007/978-3-540-45221-8_31
https://doi.org/10.1007/978-3-540-45221-8_31
https://doi.org/10.1109/FTCS.1993.627355
https://doi.org/10.1109/FTCS.1993.627355
https://doi.org/10.1145/1810295.1810364
https://doi.org/10.1109/TII.2012.2183878
https://doi.org/10.1145/2516821.2516847
https://doi.org/10.1134/S0361768816010059

Bibliography

[Kru+15]

[KRV18]

[KTG14]

[Li+07]

[Lim+95]

[Lis14]

[LMO95]

[LS03]

[LS09]

Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. A survey on engineering approaches for self-adaptive sys-
tems. Perv. Mob. Comput. 17, 2015, pp. 184-206. por: 10.1016/j .pmcj.2014.
09.009.

Pradeeban Kathiravelu, Peter Van Roy, and Luis Veiga. SD-CPS: software-defined
cyber-physical systems. taming the challenges of CPS with workflows at the edge.
Cluster Computing 22(3), 2018, pp. 661-677. por: 10.1007/s10586-018-2874-8.

Christian Krause, Matthias Tichy, and Holger Giese. Implementing graph trans-
formations in the bulk synchronous parallel model. In: Fundamental Approaches
to Software Engineering, pp. 325-339. 2014.

Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: a tim-
ing analyzer for embedded software. Science of Computer Programming 69(1-3),
2007, pp. 56—67.

Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul Min,
Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and Chong Sang
Kim. An accurate worst case timing analysis for risc processors. IEEE transactions

on software engineering 21(7), 1995, pp. 593-604.

Bjorn Lisper. Sweet—a tool for wcet flow analysis. In: International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation, pp. 482-
485. 2014.

Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded soft-
ware using implicit path enumeration. In: ACM SIGPLAN Notices, vol. 30, pp. 88—
98. 1995. por1: 10.1109/43.664229.

George Logothetis and Klaus Schneider. Exact high level WCET analysis of syn-
chronous programs by symbolic state space exploration. Proceedings -Design, Au-
tomation and Test in Europe, DATE, 2003, pp. 196-203. po1: 10.1109/DATE. 2003.
1186386.

Martin Leucker and Christian Schallhart. A brief account of runtime verification.
7. Log. Algebr. Program. 78(5), 2009, pp. 293-303. por: 10.1016/j . jlap.2008.
08.004.

148

https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1007/s10586-018-2874-8
https://doi.org/10.1109/43.664229
https://doi.org/10.1109/DATE.2003.1186386
https://doi.org/10.1109/DATE.2003.1186386
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004

Bibliography

[Ma+12]

[Maj+19]

[Mar+04]

[Mar+20]

[Mas+04]

[MB15]

[MD15]

[Med+15]

[Mer+12]

Shuai Ma, Yang Cao, Jinpeng Huai, and Tianyu Wo. Distributed graph pattern
matching. In: Proceedings of the 21st international conference on World Wide Web,
pp. 949-958. 2012.

Istvan Majzik, Oszkar Semerath, Csaba Hajdu, Krist6f Marussy, Zoltan Szatmari,
Zoltan Micskei, Andras Voros, Aren A Babikian, and Daniel Varrd. Towards system-
level testing with coverage guarantees for autonomous vehicles. In: 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages and Systems
(MODELS), pp. 89-94. 2019.

Miklés Maréti, Branislav Kusy, Gyula Simon, and Akos Lédeczi. The flooding time
synchronization protocol. In: Proceedings of the 2nd international conference on

Embedded networked sensor systems, pp. 39-49. 2004.

Kristof Marussy, Oszkar Semerath, Aren A Babikian, and Daniel Varré. A specifi-
cation language for consistent model generation based on partial models. Journal
of Object Technology, 2020. Accepted.

Miguel Masmano, Ismael Ripoll, Alfons Crespo, and Jorge Real. TLSF: a new dy-
namic memory allocator for real-time systems. In: 16th Euromicro Conference on
Real-Time Systems, pp. 79—-88. 2004.

Menna Mostafa and Borzoo Bonakdarpour. Decentralized Runtime Verification
of LTL Specifications in Distributed Systems. In: 2015 IEEE International Parallel
and Distributed Processing Symposium, pp. 494-503. 2015. po1: 10.1109/IPDPS.
2015.95.

Joseph D McDonald and Francis T Durso. A behavioral intervention for reduc-
ing postcompletion errors in a safety-critical system. Human factors 57(6), 2015,
pp. 917-929.

Ramy Medhat, Borzoo Bonakdarpour, Deepak Kumar, and Sebastian Fischmeister.
Runtime monitoring of cyber-physical systems under timing and memory con-
straints. ACM Transactions on Embedded Computing Systems (TECS) 14(4), 2015,
pp- 1-29.

Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore
Rosu. An overview of the MOP runtime verification framework. Int. . Softw. Tools
Technol. Transfer 14(3), 2012, pp. 249-289. por: 10.1007/s10009-011-0198-6.

149

https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1007/s10009-011-0198-6

Bibliography

[Mit+14]

[Mol+18]

[Mor+14]

[MP14]

[MSV18]

[MSW18]

[MW16]

[Nen+15]

[Nie+15]

[NNZ00]

Ralf Mitschke, Sebastian Erdweg, Mirko Kohler, Mira Mezini, and Guido
Salvaneschi. i3QL: language-integrated live data views. ACM SIGPLAN Notices
49(10), 2014, pp. 417-432. por: 10.1145/2714064.2660242.

Vince Molnar, Bence Graics, Andras Voros, Istvan Majzik, and Daniel Varr6. The
Gamma statechart composition framework: design, verification and code gener-
ation for component-based reactive systems. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings, pp. 113-116.
ACM, 2018. por: 10.1145/3183440.3183489.

Brice Morin et al. Kevoree Modeling Framework (KMF): Efficient modeling tech-

niques for runtime use. Tech. rep. University of Luxembourg, 2014, p. 25.

Stefan Mitsch and André Platzer. ModelPlex: verified runtime validation of ver-
ified cyber-physical system models. In: Intl. Conference on Runtime Verification,
pp- 199-214. 2014. por: 10.1007/978-3-319-11164-3_17.

Kristof Marussy, Oszkar Semerath, and Daniel Varro6. Incremental view model
synchronization using partial models. Proceedings - 21st ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS 2018,
2018, pp. 323-333. por: 10.1145/3239372.3239412.

Mithun Mukherjee, Lei Shu, and Di Wang. Survey of fog computing: Fundamen-
tal, network applications, and research challenges. IEEE Communications Surveys
and Tutorials 20(3), 2018, pp. 1826-1857. po1: 10.1109/C0OMST.2018.2814571.

Alexandra Mazak and Manuel Wimmer. Towards liquid models: an evolutionary
modeling approach. Proceedings - CBI 2016: 18th IEEE Conference on Business In-
formatics 1, 2016, pp. 104-112. por: 10.1109/CBI.2016.20.

Laura Nenzi, Luca Bortolussi, Vincenzo Ciancia, Michele Loreti, and Mieke
Massink. Qualitative and quantitative monitoring of spatio-temporal properties.
In: Ezio Bartocci and Rupak Majumdar (eds.), Runtime Verification, pp. 21-37.
Springer International Publishing, 2015.

Claus Ballegaard Nielsen, Peter Gorm Larsen, John S Fitzgerald, Jim Woodcock,
and Jan Peleska. Systems of systems engineering: basic concepts, model-based

techniques, and research directions. ACM Comput. Surv. 48(2), 2015, p. 18.

Ulrich Nickel, Jérg Niere, and Albert Ziindorf. The FUJABA environment. In: ICSE
2000, pp. 742-745. 2000. por: 10. 1145/337180.337620.

150

https://doi.org/10.1145/2714064.2660242
https://doi.org/10.1145/3183440.3183489
https://doi.org/10.1007/978-3-319-11164-3_17
https://doi.org/10.1145/3239372.3239412
https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1109/CBI.2016.20
https://doi.org/10.1145/337180.337620

Bibliography

[Obj19]

[0S95]

[Par03]

[Pet+14]

[Pik+10]

[Pua06]

[Qui+09]

[Riel7]

[Rus01]

[Rus08]

[SBKO6]

[Sem+20]

Object Management Group. DDS for eXtreamly Resource-Constrained Environ-
ments (DDS-XRCE). 2019. URL: https://www.omg.org/spec/DDS-XRCE/.

Gultekin Ozsoyoglu and Richard T. Snodgrass. Temporal and real-time databases:
a survey. IEEE Trans. Knowl. Data Eng. 7(4), 1995.

Gerardo Pardo-Castellote. OMG Data-Distribution Service: architectural overview.
In: Proc. 23rd Int. Conf Distrib. Comput. Syst. Workshops, 2003.

Martin Peters, Christopher Brink, Sabine Sachweh, and Albert Ziindorf. Scaling
parallel rule-based reasoning. In: ESWC, pp. 270-285. 2014. po1: 10.1007/978-
3-319-07443-6_109.

Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: a hard
real-time runtime monitor. In: LNCS, vol. 6418, pp. 345-359. 2010. por: 10.1007/
978-3-642-16612-9_26.

Isabelle Puaut. WCET-centric software-controlled instruction caches for hard real-
time systems. Proceedings - Euromicro Conference on Real-Time Systems 2006, 2006,
pp. 217-226.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In:

ICRA workshop on open-source software, vol. 3, p. 5. 2009.

Leanna Rierson. Developing Safety-Critical Software. CRC Press, 2017, pp. 22-27.
porl: 10.1201/9781315218168.

John Rushby. Bus architectures for safety-critical embedded systems. In: Thomas
A. Henzinger and Christoph M. Kirsch (eds.), Embedded Software, pp. 306—-323.
Springer Berlin Heidelberg, 2001.

John Rushby. Runtime certification. In: International Workshop on Runtime Veri-
fication, pp. 21-35. 2008.

Roberto Solis, Vivek Borkar, and PR Kumar. A new distributed time synchroniza-
tion protocol for multihop wireless networks. In: Proceedings of the 45th IEEE Con-
ference on Decision and Control, pp. 2734-2739. 2006.

Oszkar Semerath, Rebeka Farkas, Gabor Bergmann, and Daniel Varré. Diversity
of graph models and graph generators in mutation testing. International Journal
on Software Tools for Technology Transfer 22(1), 2020, pp. 57-78.

151

https://www.omg.org/spec/DDS-XRCE/
https://doi.org/10.1007/978-3-319-07443-6_19
https://doi.org/10.1007/978-3-319-07443-6_19
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1201/9781315218168

Bibliography

[Sha+10]

[SL18]

[SNV18]

[Sob52]

[Som+13]

[SS07]

[Sta138]

[Ste+08]

[SV17]

[SVV16]

[SZ13]

Jin Shao, Hao Wei, Qianxiang Wang, and Hong Mei. A runtime model based mon-
itoring approach for cloud. In: 2010 IEEE 3rd International Conference on Cloud
Computing, pp. 313-320. 2010.

Bin Shao and Yatao Li. Parallel processing of graphs. In: Graph Data Management,
pp. 143-162. Springer, 2018.

Oszkar Semerath, Andras Szabolcs Nagy, and Daniel Varré. A graph solver for the
automated generation of consistent domain-specific models. In: 40th International

Conference on Software Engineering, pp. 969-980. 2018.

Bolestaw Sobocinski. Axiomatization of a partial system of three-value calculus of

propositions. Institute of Applied Logic, 1952.

Stephan Sommer, Alexander Camek, Klaus Becker, Christian Buckl, Andreas

Zirkler, Ludger Fiege, Michael Armbruster, Gernot Spiegelberg, and Alois Knoll.
Race: a centralized platform computer based architecture for automotive applica-
tions. In: 2013 IEEE International Electric Vehicle Conference (IEVC), pp. 1-6. 2013.

Rathijit Sen and Y. N. Srikant. WCET estimation for executables in the presence
of data caches. In: Proceedings of the 7th ACM & IEEE EMSOFT ’07, p. 203. 2007.

International Organization for Standardization. ISO 26262: Road Vehicles — Func-
tional Safety. Second edition. 2018.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: Eclipse

Modeling Framework. Pearson Education, 2008.

Oszkar Semerath and Daniel Varrd. Graph constraint evaluation over partial mod-
els by constraint rewriting. In: ICMT 2017, pp. 138-154. 2017. por1: 10.1007/978-
3-319-61473-1_10.

Oszkar Semerath, Andras Voros, and Daniel Varro. Iterative and incremental model
generation by logic solvers. In: International Conference on Fundamental Approaches

to Software Engineering, pp. 87-103. 2016.

Michael Szvetits and Uwe Zdun. Systematic literature review of the objectives,
techniques, kinds, and architectures of models at runtime. Software & Systems
Modeling 15(1), 2013, pp. 31-69. por: 10.1007/s10270-013-0394-9.

152

https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/s10270-013-0394-9

Bibliography

[Sza+14] Gabor Szarnyas, Benedek Izso, Istvan Rath, Dénes Harmath, Gabor Bergmann,
and Daniel Varré. IncQuery-D: a distributed incremental model query framework
in the cloud. In: International Conference on Model Driven Engineering Languages
and Systems, pp. 653-669. 2014.

[Sza+17] Géabor Szarnyas, Benedek Izso, Istvan Rath, and Déaniel Varr6. The Train Bench-
mark: cross-technology performance evaluation of continuous model queries. Soft-
ware and Systems Modeling, 2017, pp. 1-29. por: 10.1007/s10270-016-0571-8.

[Szt+12] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V. Gupta, B.
Goodwine, and J. Baras. Toward a science of cyber-physical system integration.
Proceedings of the IEEE 100(1), 2012, pp. 29-44. po1: 10 . 1109/ JPROC . 2011 .
2161529.

[Szt+14] Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard, and Ethan Jackson.
Openmeta: a model- and component-based design tool chain for cyber-physical
systems. In: From Programs to Systems. The Systems perspective in Computing:
ETAPS Workshop, FPS 2014, in Honor of Joseph Sifakis, Grenoble, France, April 6,
2014. Proceedings. Springer Berlin Heidelberg, 2014, pp. 235-248. por: 10.1007/
978-3-642-54848-2_16.

[Tei+94] Juergen Teich, Shruva Sriram, Lothar Thiele, and Michael Martin. Performance
analysis of mixed asynchronous synchronous systems. In: Proceedings of 1994
IEEE Workshop on VLSI Signal Processing, pp. 103-112. 1994.

[The14] The Object Management Group. Object Constraint Language, v2.4. 2014. URL:
https://www.omg.org/spec/0CL/2.4.

[Tot+14] Tamas Toth et al. Verification of a real-time safety-critical protocol using a mod-
elling language with formal data and behaviour semantics. In: Computer Safety,
Reliability, and Security. 2014, pp. 207-218.

[TR96] Juha Taina and Kimmo Raatikainen. Rodain: A real-time object-oriented database
system for telecommunications. In: ACM International Conference on Information
and Knowledge Management, vol. Part F129290, pp. 10-14. 1996. por: 10. 1145/
352302.352306.

[Uet+16] Kosei Ueta, Xiaoyong Xue, Yukikazu Nakamoto, and Sena Murakami. A distributed
graph database for the data management of iot systems. In: Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE

153

https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1109/JPROC.2011.2161529
https://doi.org/10.1109/JPROC.2011.2161529
https://doi.org/10.1007/978-3-642-54848-2_16
https://doi.org/10.1007/978-3-642-54848-2_16
https://www.omg.org/spec/OCL/2.4
https://doi.org/10.1145/352302.352306
https://doi.org/10.1145/352302.352306

Bibliography

[Ujh+15]

[Var+15]

[Var+16]

[Var+18]

[VAS12]

[VB07]

[VG14]

[Vie+16]

[War92]

Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
2016 IEEE International Conference on, pp. 299-304. 2016.

Zoltan Ujhelyi et al. EMF-IncQuery: an integrated development environment for

live model queries. Sci. Comput. Program. 98, 2015, pp. 80-99.

Gergely Varrd, Frederik Deckwerth, Martin Wieber, and Andy Schiirr. An algo-
rithm for generating model-sensitive search plans for pattern matching on EMF
models. Software & Systems Modeling, 2015, pp. 597-621. por: 10.1007/s10270-
013-0372-2.

Daniel Varro6 et al. Road to a reactive and incremental model transformation plat-
form: three generations of the VIATRA framework. Software & System Modeling,
2016. por: 10.1007/s10270-016-0530-4.

Daniel Varro, Oszkar Semerath, Gabor Szarnyas, and Akos Horvath. Towards the
automated generation of consistent, diverse, scalable and realistic graph models.
In: Graph Transformation, Specifications, and Nets (In Memory of Hartmut Ehrig).
10800. 2018.

Gergely Varrd, Anthony Anjorin, and Andy Schiirr. Unification of compiled and
interpreter-based pattern matching techniques. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 7349 LNCS, 2012, pp. 368-383.

Daniel Varr6 and Andras Balogh. The model transformation language of the VIA-
TRA2 framework. Sci. Comput. Program. 68(3), 2007, pp. 214-234. por: 10.1016/
j.scico.2007.05.004.

Thomas Vogel and Holger Giese. Model-driven engineering of self-adaptive soft-
ware with EUREMA. ACM Trans. Auton. Adapt. Syst. 8(4), 2014, p. 18. por: 10.
1145/2555612.

Michael Vierhauser, Rick Rabiser, Paul Griinbacher, Klaus Seyerlehner, Stefan
Wallner, and Helmut Zeisel. Reminds: A flexible runtime monitoring framework

for systems of systems. Journal of Systems and Software 112, 2016, pp. 123-136.

David S. Warren. Memoing for logic programs. Commun. ACM 35(3), 1992, pp. 93—
111. por: 10.1145/131295.131299.

154

https://doi.org/10.1007/s10270-013-0372-2
https://doi.org/10.1007/s10270-013-0372-2
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1016/j.scico.2007.05.004
https://doi.org/10.1016/j.scico.2007.05.004
https://doi.org/10.1145/2555612
https://doi.org/10.1145/2555612
https://doi.org/10.1145/131295.131299

Bibliography

[Wil+08]

[Wil+10]

[ZDG09]

[Zha+15]

[Zhe+16]

Reinhard Wilhelm et al. The determination of worst-case execution times: over-
view of the methods and survey of tools. ACM Trans. Embedded Comput. Syst.
7(3), 2008, 36:1-36:53.

Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguiére, Daniel Grund, Jorg
Herter, Jan Reineke, Bjorn Wachter, and Stephan Wilhelm. Static timing analysis
for hard real-time systems. In: Verification, Model Checking, and Abstract Interpre-
tation, 2010.

Haitao Zhu, Matthew B. Dwyer, and Steve Goddard. Predictable runtime moni-
toring. Proceedings - Euromicro Conference on Real-Time Systems (2), 2009, pp. 173—
183.

Ben Zhang et al. The cloud is not enough: saving IoT from the cloud. In: 7th
USENIX Workshop on Hot Topics in Cloud Computing, 2015.

XiZheng, Christine Julien, Rodion Podorozhny, Franck Cassez, and Thierry Rako-
toarivelo. Efficient and Scalable Runtime Monitoring for Cyber—Physical System.
IEEE Systems Journal, 2016, pp. 1-12. por: 10.1109/JSYST.2016.2614599.

155

https://doi.org/10.1109/JSYST.2016.2614599

Appendices

156

=W N e

(3,1

31

33

Definitions of Safety Properties in VQL

The safety monitoring goals presented in Listing A.1 use the concepts presented in Figure 3.2a
(the MoDeS3 metamodel).

pattern trainlLocations(train : Train, location : Segment) {

Train.location(train, location);

pattern end0fSiding(train : Train, location : Segment) {
Segment.occupiedBy(location, train);
Segment .connectedTo(end, location);

1 == count find connected(end, _);

pattern closeTrains(start : Segment, end : Segment) {
Train.location(_train, start);

Segment .connectedTo(start, middle);

Segment .connectedTo(middle, end);

start != end;

Segment.occupiedBy(end, _otherTrain);
}

pattern misalignedTurnout(location : Segment, train : Train) {
Turnout (turnout) ;
Segment.occupiedBy(location, train);
Turnout.straight (turnout, location);
neg find connected(location, turnout);
} or {
Turnout (turnout) ;
Segment .occupiedBy(location, train);
Turnout.divergent (turnout, location);

neg find connected(location, turnout);

private pattern connected(a : Segment, b : Segment) {

Segment .connectedTo(a, b);

Listing A.1: The definitions of queries taken from the MoDeS3 domain using VQL syntax

157

Proof Sketches

Proposition 1. For a query program q, theories 77, 7, and model scopes S, S’ the following
inequality holds:

If7" 27 and VC; € : §'(C;) € S(C;) then WCET (T, S’) < WCET(T, S).

Proof. (Sketch.)Let M = {M : 7, S £ M} be the set of well-formed models in the model scope.
It is sufficient to show that M’ = {M : 7/,8" £ M} C M since the witness model M* € M

provides the longes estimated execution. Therefore, we have to consider the following two

cases: (1) 7' 27,8 =8Sand (2) 7' =7,8 ¢S

1. Assume 7' 2 7,8’ = S, i.e,, there is at least one additional WF constraint added to the
theory of WF constraints, but the scope remains the same. The addition of a new WF
constraint cannot invalidate existing constraints, i.e, VM : 7', SEM — 7,S £ M.

2. Assume 7' =7,8" C S, i.e, there is at least one C; € X such that S’(C;) € S(C;) and
the theory of WF constraints remains the same. For the witness model 7, S £ M, it is
true that statsy;+(C;) € S(C;). If statsy+(C;) ¢ S’(C;), the witness model 7,8 £ M*™
need to yield a lower WCET estimate, otherwise it would have been included in the

optimal solution using 7, S.

Proposition 2. The following inequality holds between execution times and their estimates:

RT4(M) < fq(M) < WCET (T, statsy) < WCET (statsy),

158

Proof Sketches

where statsy(C;) = [statsy(C;), statsy;(C;)] is the scope corresponding exactly to the model

statistics statsy.

Proof. (Sketch.) We show that the following three inequalities hold:

1. RT(M) < fy(M)
2. fq(M) < WCETS(T, statsy)
3. WCETS(T, statsy) < WCETY(statsy;)

1. The function fq precisely counts the BB executions of the query program q over model M,
and multiplies this number by the execution time of the BB. Furthermore, we use the longest
possible estimated execution times of BBs when defining f;. Therefore, RTq(M) < fq(M)
holds.

2. The definition of WCET;1 is to compute the value of f; for the witness model M*, which
maximizes the value returned by this function. This means that for any model with the same
statistics as M, fq(M) < WCET (T, statsy) holds.

3. The formula which defines WCET{ (statsy) sums BB execution times based on program
control flow, and statsys provides the flow facts for setting maximum loop bounds. These flow
facts inherently overestimate execution counts in cases where there is a variation in actual
loop repetitions since it will assume the number of maximum repetitions. On the contrary,
WCET (T, statsy) will precisely count how many times a BB is executed if a query is eval-
uated over model M. This proves that the inequality WCET(7, statsy) < WCET (statsy)
holds.

159

	Preface
	List of Abbreviations
	I Preliminaries
	1 Introduction
	1.1 Smart and Safe Systems
	1.2 Model-Based Development of Safety-Critical Systems
	1.3 Assurance of Smart Systems: Hypothesis and Goals
	1.4 Research Questions and Contributions
	1.4.1 Runtime Models
	1.4.2 Runtime Queries
	1.4.3 Timing Analysis

	1.5 Structure of the Thesis

	2 Motivating Case Study
	2.1 MoDeS3: a Demonstrator for Smart and Safe CPS
	2.2 Design- and Runtime Assurance
	2.2.1 Design Time Formal V&V of Timing Properties
	2.2.2 Runtime Safety Monitors
	2.2.3 Hierarchical Distributed Monitors
	2.2.4 Timing Analysis of Real-Time Monitors

	2.3 Summary

	3 Background for Query-Based Monitors
	3.1 Runtime Models
	3.1.1 Metamodels and Instance Models
	3.1.2 Update Operations on Runtime Models
	3.1.3 First-Order Logic Predicates for Queries Over Graph Models

	3.2 Local Search-Based Graph Query Evaluation
	3.3 Model Generation Problems
	3.4 The Data Distribution Service Middleware
	3.5 Summary

	4 Related Work
	4.1 Runtime Models
	4.1.1 Concept of Models@Runtime
	4.1.2 Frameworks for Models@Runtime

	4.2 Distributed Management of Dynamic Graphs
	4.2.1 Management of Graphs in Distributed Systems
	4.2.2 Graph Pattern Matching
	4.2.3 Distributed Graph Databases

	4.3 Runtime Verification
	4.3.1 Runtime Verification Approaches
	4.3.2 Runtime Monitoring in Resource-Constrained Environments.
	4.3.3 Runtime Verification of Distributed Systems.
	4.3.4 Resource Monitoring Frameworks

	4.4 Worst-Case Execution Time Analysis
	4.4.1 Program Flow Analysis
	4.4.2 Parametric WCET Computation
	4.4.3 Real-Time Database Queries
	4.4.4 WCET of Graph-Based Computations
	4.4.5 Hard Real-Time Monitors in Embedded Systems
	4.4.6 Dynamic Memory Allocation in Embedded Systems

	4.5 Summary

	II Runtime Graph Models and Queries in Real-Time Systems
	5 Adaptation of Runtime Graph Models to Embedded Systems
	5.1 Graph Data Structures for Embedded Systems
	5.1.1 Dynamic Element Allocation
	5.1.2 Object Indexing
	5.1.3 Continuous Maintenance of Model Statistics
	5.1.4 Navigability Along Edges
	5.1.5 Reduced Memory Footprint

	5.2 Evaluation
	5.2.1 Evaluation Overview and Setup
	5.2.2 Measurement Results
	5.2.3 Threats to Validity

	5.3 Summary

	6 Query-Based Runtime Monitors for Real-Time Systems
	6.1 Data-Driven Runtime Monitors by Graph Queries
	6.2 From Declarative Queries to Executable Programs
	6.3 Evaluation
	6.3.1 Measurement Setup
	6.3.2 Measurement Results
	6.3.3 Threats to Validity

	6.4 Summary

	7 Timing Analysis of Embedded Query Programs
	7.1 Timing Analysis Challenges
	7.2 Graph Model-Based WCET Estimation
	7.2.1 Existing WCET Analysis Methods
	7.2.2 Comparison of Timing Analysis Approaches
	7.2.3 Overview of the Approach

	7.3 Approximating Execution Time With Predicates
	7.4 Witness Generation of Worst-Case Execution Time
	7.5 On-Line WCET Estimation for Graph Query Programs
	7.6 Hybrid WCET Estimation
	7.7 Evaluation
	7.7.1 Evaluation Overview and Setup
	7.7.2 Evaluation Results
	7.7.3 Threats to Validity

	7.8 Summary

	III Distributed Runtime Graph Models and Queries
	8 Distributed Runtime Models
	8.1 Distributed Runtime Models
	8.1.1 Metamodel Features for Distributed Runtime Models
	8.1.2 Distributed Runtime Graph Models
	8.1.3 Distributed Model Update Operations

	8.2 A Model Management Protocol for Distributed Runtime Models
	8.2.1 Overview of Assumptions
	8.2.2 A Multi-Phase Model Update Protocol
	8.2.3 Object Create Phase
	8.2.4 Object Delete Phase
	8.2.5 Link Update Request Phase
	8.2.6 Link Update Reply Phase

	8.3 Fault Tolerance and Consistency
	8.3.1 Fault Tolerance to Handle Message Loss
	8.3.2 Semantic Aspects of Consistency

	8.4 Evaluation
	8.4.1 Measurement Setup
	8.4.2 Benchmark Results on Real CPS Platform
	8.4.3 Benchmark Results on a Virtual CPS Platform
	8.4.4 Threats to Validity

	8.5 Summary

	9 Distributed Graph Queries
	9.1 Strategies for Distributed Runtime Monitoring
	9.2 Distributed Evaluation of Graph Queries
	9.2.1 A Query Cycle
	9.2.2 Semantics of Distributed Query Evaluation
	9.2.3 Performance Optimizations
	9.2.4 Semantic Guarantees and Limitations

	9.3 Evaluation
	9.3.1 Benchmark Setup
	9.3.2 Benchmark Results Over Real CPS Platform
	9.3.3 Virtual CPS Benchmark Results
	9.3.4 Threats to Validity

	9.4 Summary

	10 Final Conclusion & Future Work
	10.1 Thesis Summary
	10.2 Future Work
	10.2.1 Runtime Graph Models
	10.2.2 Distributed Query Evaluation
	10.2.3 Timing Analysis

	Bibliography
	A Definitions of Safety Properties in VQL
	B Proof Sketches

